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Abstract. From a computability-theoretic standpoint, we consider the following problem:
Given a closed surface, as a topological space, how hard is it to recover an atlas? We prove
that every computable Polish space homeomorphic to a closed surface admits an arithmetic
atlas, and indeed an arithmetic triangulation. It follows that given two computable presen-
tations of the same closed surface, there is an arithmetic homeomorphism between them.
Moreover, the homeomorphism problem for closed surfaces, presented as topological spaces,
is arithmetic. From the algorithmic and definability-theoretic standpoint, this improves
Kline’s conjecture proved by Bing in the 1940s. We also consider R2 and the closed unit
ball.

1. Introduction

A smooth manifold comes equipped with an atlas of smooth coordinate charts, and the
smooth structure cannot (in dimensions ≥ 4) be recovered purely from the topology of the
underlying space. On the other hand, a topological manifold is just a topological space for
which there exists some atlas of coordinate charts; but the coordinate charts do not really
form part of the structure of the manifold. In this paper, we ask:

How difficult is it to recover an atlas of coordinate charts from the topological
structure of a topological manifold?

In the present paper we develop a general machinery which allows us to attack this and
similar questions and measure the complexity of various problems in topology and geometry.
For the most part in this paper we consider surfaces, where the arguments are already
quite complicated. Our main results say that, for a closed surface, one can arithmetically
recover an atlas and a triangulation from the topological structure; we will clarify what this
means shortly, but we note that ‘arithmetic’ here is as closest to ‘computable’ as one could
possibly hope for. Since closed surfaces are easily understood given a triangulation, we also
get that any two presentations, as topological spaces, of a closed surface are arithmetically
homeomorphic, and that the characterization problem for closed surfaces among all Polish
spaces is arithmetic. We now give some background and details.

1.1. Computability in analysis and topology. Our approach for measuring difficulty is
that of computability theory. The study of undecidability in manifolds mostly branched off
from computability in the 1960’s, and with a few exceptions (e.g., [Soa04, CS06, NW00]) the
two have not really been reunited since.

Topologists have mainly been focused on analysing decision problems about manifolds rep-
resented as finite simplicial complexes to determine whether the decision problem is decidable
or undecidable. On the other hand, computability theorists have developed many tools for
dealing with countably representable objects such as separable metric spaces ([Wei00, PER89,
BHW08]) and also tools for measuring exactly how undecidable a problem is ([Soa87, AK00]).
These tools have not yet been applied to manifolds.
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This paper seeks to bring these modern tools to bear on the study of topological manifolds.
There is a huge unexplored area here. In an attempt to amend this in Section 2 we will give
a brief history of the computability-theoretic study of manifolds, with the additional goals
of (a) giving the geometer some idea of the kinds of questions computability theory can
answer, as well as some idea of what it means to be arithmetic, (b) introducing the com-
putability theorist to the existing literature and some interesting problems about manifolds,
and (c) posing some questions for further work.

To state our results formally we will need to explain the main definitions. We represent
the topological space of a surface as the completion X =M of a countable metric space M ,
representing points in the topological space by Cauchy sequences from M just as one might
compute with the reals R = Q by considering rational approximations. We will clarify this
formally in Section 3. Such representations go back to Turing [Tur36, Tur37] and have been
quite fruitful in using computability theory to study topology [PER89, Wei00, MN13, NS15,
Sel20, HKS, HTMN]. Given a computably metrized topological space homeomorphic to a
manifold, we consider the computational problem of constructing an atlas. This will not be
computable in general, but we can measure the difficulty using computability-theoretic hier-
archies which are the computability-theoretic equivalents of complexity-theoretic hierarchies
such as P, NP, and the polynomial hierarchy.

If a problem is decidable, it is not necessarily efficiently decidable; we can make a finer
analysis by measuring the time or space complexity. Similarly, if a problem is undecidable,
it is not necessarily completely intractable especially if we are dealing with infinite presen-
tations. For example, Malcev [Mal61] observed that linear independence in a countable
vector space over Q does not have to be decidable, and it is easy to see that the isomor-
phism problem for such spaces is undecidable. Of course all such spaces well-understood
and are fully classified by their dimension; this is reflected by the fact that these problems
have arithmetic solutions. Compare this to a result of Downey and Montalban [DM08] who
proved that deciding whether two countable torsion-free abelian groups are isomorphic is an
analytic complete problem, and hence far from arithmetic. The result essentially says that
the class of torsion-free abelian groups lacks useful invariants because to check if two such
groups are isomorphic one has to go through all potential isomorphisms and check whether
any such map works. We cite [GK02] for discussion of the approach and [Mel18, BMM] for
more recent applications to classification problems in topology.

In Section 2 we will explain what it means for a decision problem to be arithmetic in
more detail, and also how it is related to the iterated Halting problem 0(n). At this stage
we only mention that, for a problem coded as a subset of natural numbers, being arithmetic
is the same as being definable by a first order formula in the semi-ring of natural numbers
(thus, the name). Indeed, such a problem is decidable relative to 0(n) if and only if both
the problem and its complement are definable in the semi-ring N by a formula beginning
with ∃ and having n unbounded quantifiers ranging over natural numbers; this follows from
the celebrated solution [Mat93] to Hilbert’s 10th problem. Essentially what it means to be
arithmetic in the context of a Polish space X =M is that there is an algorithm which requires
answers to first-order questions only, that is, questions quantifying over points from the fixed
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dense set M , but not over higher-order objects such as arbitrary points in the completion
X =M , curves, subsets, etc.1

1.2. The main results. We return to the question about finding atlases and triangulations
of manifolds raised at the beginning of the introduction. At first glance the property of
having an arithmetic atlas is not first-order/arithmetic; indeed, it seems to require an ex-
haustive search through all possible homeomorphic embeddings of the unit disc into the given
space. It is thus perhaps unexpected that an atlas of a compact surface can be constructed
arithmetically.

Theorem 1.1. Every computable closed surface has an arithmetic atlas.

The proof of this theorem is in Section 4. The upper bound on the complexity that can be
extracted from the proof is 0(20); this means that one can construct an atlas by understanding
questions involving 20 alternations of first-order quantifiers. We conjecture that this upper
bound is not optimal, but we also suspect the the complexity cannot be improved too much
in general (e.g., we expect that it cannot be improved to something like 0(3)); we leave
this open. On the other hand, this relatively high arithmetic complexity of the atlas comes
from repeatedly checking various local properties, e.g., verifying if two points are connected,
within some fixed open set and for every ε, by a sequence of points of distance ε from each
other. In other words, the result and the proof illustrate that all pathologies and obstacles
that one faces when trying to build an atlas are local in their nature.

In our main theorem, Theorem 1.1, we represent a manifold as the completion of a count-
able metric spaceM . One would not expect a decision problem involving such representations
to be decidable, as at any finite amount of time, a computer program will only have looked at
finitely many points from M . So for such decision problems, having an arithmetic solution is
the best we could hope for. Of course, there are many possible representations of manifolds.
Other than representing a manifold as the completion of a computable metric space, what
are some of the most compelling alternate notions of computability for a manifold?

● As the completion of a countable metric space together with an atlas. This type of
notion has been recently introduced and studied in [AC17].

● As a closed subset of Rq. It is well-known that every closed manifold can be realised
as a subset of a suitable power of R.

● As a simplicial complex, i.e., S is given by a computable triangulation. This is
certainly the strongest notion, and of course it is highly practical. Note, however,
that some manifolds cannot be triangulated (e.g., [Man16a]), but this would not be
an issue for closed surfaces. Nonetheless, all classical triangulation proofs for surfaces
that we are aware of are not even close to being arithmetic, let alone computable, so
one could argue that this notion is way too strong.

1For example, asking “Are there infinitely many points x ∈ M within ε of a?” is a first-order question.
In contrast, analytic complete problems (such as the aforementioned [DM08]) require an exhaustive search
through the uncountable space of functions f ∶ N → N. Equivalently, such problems require second-order
quantification over subsets of natural numbers. In the context of Polish spaces, “Is there a path from a to
b?” and “Is there a homomorphic embedding of an 3-sphere to X?” are not first-order questions, at least
as stated.
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How different are these representations from each other? Relying mainly on Theorem 1.1 to
do the heavy lifting, we show that for a closed surface we can pass between these represen-
tations in an arithmetic way.

Theorem 1.2. For a closed surface S, we can pass between the following representations
arithmetically, including computing homeomorphisms between the two representations:

(1) S is represented as the completion of a countable metric space.
(2) S is represented as the completion of a countable metric space with an atlas.
(3) S is represented as a simplicial complex.
(4) S is represented as a closed subset of R5.

The proof of this theorem is throughout the paper but is finally put together in Section 6.
We note that (1) → (3), which says that every computably metrized surface has an arith-
metic triangulation, is of independent interest. This fact is proved as Theorem 5.1. All the
triangulation proofs that we are aware of are far from being algorithmic, so we had to design
a new apparatus based on definability up to homeomorphism. Since our results are based
on these definability techniques, they are of course relativizable to any oracle.

1.3. Applications to the classification problem in topology. Finally, we draw a con-
nection with work on topological characterisations of particular spaces. Suppose we are given
X =M . How hard is it to tell whether X is homeomorphic to a 2-dimensional sphere? Can
we characterise the homeomorphism type of the sphere? Such investigations can be traced
back to the beginning of the 20th century. For instance, in 1919, Moore [Moo19] gave a
complex axiomatic characterisation of the Euclidean plane up to homeomorphism. Almost
30 years later, Bing [Bin46] confirmed Kline’s conjecture by showing that the 2-sphere S2 is
described, up to homeomorphism, by the following property: It is the only locally connected
metric continuum separated by any simple closed curve but by no pair of points. In 1992
Thomassen [Tho92a] gave a similar characterisation of the unit 2-sphere: It is a compact
arcwise-connected metric space X satisfying the following two conditions: (1) if J is an arc
in X, then X −J is arcwise connected, and (2) if J is a simple closed curve in X, then X −J
is not connected. There are also neat characterisations of n-spheres in terms of curvatures
of arcs in the space; see [BKK03].

From a logician’s point of view, we want to measure how good these characterisations are,
and to measure the inherent complexity of characterising these spaces. A good characterisa-
tion would be syntactically or computationally simpler than just checking that a given space
is homeomorphic to S2 by going through all potential homeomorphisms. Going through
all uncountably many potential homeomorphisms would not be arithmetic, for example, so
we hope for an arithmetic characterisation. The characterisations described above are not
inherently arithmetic, because they refer to arbitrary points and to Jordan curves, of which
there are uncountably many.

Computability theory can be used to formally clarify this intuition. More specifically, re-
cently there have been several successful applications of computability-theoretic techniques
to classification and characterisation problems in Polish spaces, Polish groups, and separable
Banach spaces. Given a property P of a Polish space, we can measure the complexity of the
index set of P is {M ∶M has property P} where M is a countable metric space. For example,
Nies and Solecki [NS15] showed that the characterization problem for locally compact spaces
{M ∶M is locally compact} is Π1

1-complete, i.e., it is complete among all problems which re-
quire one universal set-quantifier, and thus there is no characterisation of such spaces which
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would be simpler than the brute-force definition. In contrast, building on the work of Gro-
mov [Gro07], Melnikov and Nies [MN13] showed that and the characterization problem for
compact metric spaces and the isometry problem {(M,N) ∶M ≅ N and M,N are compact}
are both arithmetic. It is also known that, for instance, the (topological) isomorphism prob-
lems for compact connected and profinite abelian groups are both Σ1

1-complete [Mel18], and
that Lebesgue spaces admit an arithemetical characterisation among all separable Banach
spaces [BMM]. The general pattern here is that tractable classes tend to have their index
sets arithemtical, while classes where no reasonable invariants are known or expected usually
have either the characterization problem or the isomorphism problem Σ1

1- or Π1
1-hard. All

these results discussed above can be relativized to an arbitrary oracle, and therefore are
not really restricted to computable members of the respective classes. We cite the recent
survey [DM20] for a detailed discussion of this approach, and for further results and open
questions.

How hard is it to tell whether X is homeomorphic to a compact surface? How hard it is
to tell if two topologically represented compact surfaces are homeomorphic? Using among
other tools (1)→(3) of Theorem 1.2 and the classification of closed surfaces, we get that:

Theorem 1.3.

(1) The characterization problem for compact surfaces among all Polish spaces is arith-
metic. That is, the set

{M ∶M is a compact surface}
is arithmetic.

(2) The homeomorphism problem for compact surfaces, represented as Polish spaces, is
arithmetic. That is, the set of pairs

{(M,N) ∶M and N are homeomorphic compact surfaces}
is arithmetic.

The proof of this theorem is in Section 5. Theorem 1.2 says that the result above is robust in
the sense that it is stable under a change of representation of spaces. Thus, there is nothing
special about using Polish representations here. Note that (1) of Theorem 1.1 says that there
is a first-order (arithemtical) way to tell whether a given Polish space is homeomorphic to a
compact surface. Since there is a complete and computable list of all homeomorphism types
of compact surfaces, each compact surface from this list also has an arithmetic characteri-
zation as well; for instance, the 2-sphere S2. From the logician’s standpoint, in the special
case of S2, this improves the above-mentioned Kline’s characterization proved by Bing.

We expect that, using the machinery in this paper, one should be able to interpret the
characterisations given in (1) of the theorem above in a way that is arithmetic without
passing through Theorem 1.1, e.g., by considering (for some fixed n) only 0(n)-computable
Jordan curves instead of arbitrary ones, in the spirit of the result of Bing.

The proofs of Theorem 1.1, Theorem 1.2, and Theorem 1.3 are intertwined throughout the
paper. The implication (4) → (1) of Theorem 1.2 is of course a triviality; see Fact 6.1. The
most technical theorem of this article is Theorem 1.1 which gives (1)→ (2) of Theorem 1.2;
it will also be one of the crucial steps in the proof of Theorem 1.1. Theorem 5.1 shows
(2)→ (3) of Theorem 1.2, and it will also be used in the proof of Theorem 1.1. We give two
proofs of (3) → (4) of Theorem 1.2; one of these proofs works for arbitrary compact spaces
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of finite dimension thus really showing (1)→ (4) for such spaces. We believe that this result,
although it is perhaps not surprising, is new. The second proof shows (2) → (4); it is very
short and almost literally follows the textbook embedding proof for manifolds. This second
proof can be found in [AC17], but we give this proof for the sake of exposition.

2. Background, history, and open problems

2.1. Undecidable problems in group theory and topology. In the 1910’s Dehn sug-
gested asking, for a given finitely presented group G = ⟨X ∣R⟩, whether there an algorithm
that decides whether two given words in X are equal in G. If so, we say that the word
problem is decidable. Such questions are, of course, intrinsically tied to geometry via the
study of the fundamental group of a manifold. Dehn [Deh12] showed, for example, that the
word problem is decidable for the fundamental groups of closed orientable two-dimensional
manifolds of genus greater than or equal to 2.

In the 1950’s, Novikov [Nov55] and Boone [Boo59] independently showed that there are
finitely presented groups with undecidable word problem. They did this by constructing a
group G = ⟨X ∣R⟩ which codes the halting problem into the word problem of the group. The
halting problem is the decision problem which asks, given a program P , whether P ever
halts. Turing [Tur36] showed that there is no algorithm to decide this. The coding given by
Novikov and Boone is a computable transformation of programs P into words wP such that

P halts ⇐⇒ wP = e.
If the word problem were decidable, then we could also decide the halting problem: given a
program P , compute wP , and decide whether wP = e; this tells us whether or not P halts.
Similarly, Adyan [Ady57a, Ady57b] and Rabin [Rab58] showed that it is undecidable, given
two finitely presented groups, whether the two are isomorphic.

Soon after, Markov [Mar58] used these results to show that it is undecidable whether
two (closed) manifolds of dimension 4 or higher, given as finite simplicial complexes, are
homeomorphic. The proof again uses a coding, this time of finitely presented groups into
manifolds. Fix n ≥ 4. Markov shows how to transform a finite presentation of a group
⟨X ∣R⟩ into an n-manifold M⟨X ∣R⟩ with fundamental group ⟨X ∣R⟩, and moreover, so that
given two different finite presentations of the same group, the corresponding manifolds are
homeomorphic:

⟨X ∣R⟩ ≅ ⟨Y ∣S⟩ ⇐⇒ M⟨X ∣R⟩ ≅M⟨Y ∣S⟩.

This gives a reduction of the problem of deciding whether two finite presentations of groups
are isomorphic to deciding whether two manifolds are homeomorphic, showing that the
latter problem is also undecidable. One can think of this undecidability result as a non-
classification result: a sufficiently powerful classification result would yield an algorithm for
the homeomorphism problem. Indeed, for d ≤ 3 the homeomorphism problem for manifolds,
presented as finite simplicial complexes, is decidable because of classification theorems; for
d = 3 this uses the work of G. Perelman on W. Thurston’s geometrization conjecture (see
[Kup19]).

There are also other examples of decidability/undecidability results in geometry and topol-
ogy, for example:

● S.P. Novikov (see the appendix to [VKF74]) showed that every n-manifoldM , n ≥ 5, is
unrecognizable: the problem of deciding whether a given n-manifold is homeomorphic
to M is undecidable. It is an open question whether S4 is unrecognizable.
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● It is also undecidable whether the geometric realization of a finite simplicial complex
is a manifold. (See [Poo14].)

● There is an algorithm which, given two knots (represented as finite sequences of
rational points in R3, which one should think of as being connected by straight lines),
determines whether they are equivalent [Hak61, Hem79]. If n ≥ 3, the problem of
deciding whether two embeddings of Sn in Rn+2 are equivalent is undecidable [NW96].
For n = 2, the answer is unknown.

2.2. Turing reducibility and the arithmetic hierarchy. In all of these classical results
discussed above, the distinction made is between decidable and undecidable problems. When
a problem is decidable, we can make a finer analysis by measuring how efficient the algorithms
are, i.e., how long they take to run. This is the domain of complexity theory, by placing them
in certain complexity classes like P and NP. Similarly, for undecidable decision problems,
computability theory has ways of measuring how undecidable they are. The central notion is
that of a Turing reduction. Informally, say that one decision problem D is Turing reducible
to another E, written D ≤T E, if we can computably transform solutions to the decision
problem E into a solution for D. (Imagine, for example, that one has a computer together
with a magic box, or oracle, that provides answers to instances of the decision problem E;
then D ≤T E if this computer, running some program with access to the oracle, can solve
D.) Think of D ≤T E as saying that D is easier to compute than E (though both may be
non-computable). D and E have the same Turing degree, written D ≡T E, if D ≤T E and
E ≤T D. We also write D <T E if D ≤T E but E ≰T D; D is of Turing degree strictly less than
E. All decidable problems have the same Turing degree, which is the least Turing degree.

For example, as described above, in showing that there is a finitely presented group G
with undecidable word problem Novikov and Boone gave a Turing reduction from the Halting
problem to the word problem for G:

HaltingProblem ≤T WordProblem(G).
In fact, they have the same Turing degree, as we can make a Turing reduction from the word
problem for G to the halting problem: Given a word w in the generators of G, one can write
a program Pw that searches for a series of relators showing that w = e, and if it every finds
such a relation, halts. Then P halts if and only if w = e. Note that both the halting problem
and the word problem are both essentially infinite searches: access to the halting problem
allows us to decide whether such a search will ever end.

There are natural problems which the halting problem cannot solve. For example, given a
finitely presented group G = ⟨X ∣R⟩, suppose that we want to decide whether G is torsion-free.
Lempp [Lem97] showed that this decision problem is not reducible to the halting problem.
Deciding whether a given element is torsion is an infinite search for some power which is
equal to the identity; but to check whether the group is torsion, we must ask whether for
every element there is some power equal to the identity. This is not a single search, but
infinitely many searches.

Given that this decision problem not Turing reducible to the halting problem, how difficult
is it? To answer such a question we want a natural “measuring stick” to measure such
problems against. One can get this using the Turing jump. The Turing jump assigns to
each decision problem D a harder decision problem D′, such that D′ cannot be solved by a
computer with oracle D. D′ is the halting problem relative to D: the problem of deciding
whether a program P , run on a computer with oracle D, halts. Turing showed that D <D′.
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We can iterate the Turing jump, writing D = D(0),D′,D′′,D(3),D(4), . . . for the successive
jumps of D. We also write 0 for the empty set, so that 0′ is the halting problem, 0′′ is the
jump of the halting problem, and so on. The iterates of the Turing jump of 0 are part of the
arithmetic hierarchy. We say that X is arithmetic if X ≤T 0(n) for some n ∈ N.

Let us return to the problem of determining whether a finitely presented groupG = ⟨X ∣R⟩ is
torsion. Lempp [Lem97] showed that this decision problem has Turing degree 0′′. Essentially,
this is because it is a decision problem involving two alternations of quantifiers: for every
word w in X, is there some n and a sequence of relators witnessing that wn represents 1?
To give some intuition about what kinds of decision problems 0′′ can be used to solve, we
will explain why this decision problem is Turing reducible to 0′′. Using the halting problem,
for each word w in X, we can write a program Pw that searches for some n and a series of
relators witnessing that wn represents 1. Then Pw halts if and only if w represents a torsion
element. Using the halting problem we can determine, for each w, whether or not Pw halts.
Now, for each presentation ⟨X ∣R⟩, using the halting problem as an oracle, we can write a
program P⟨X ∣R⟩ which searches for a word w such that Pw does not halt and w does not
represent a torsion element. Then P⟨X ∣R⟩ halts if and only if ⟨X ∣R⟩ is not a torsion group.
And 0′′ can determine whether or not P⟨X ∣R⟩ halts.

In general, the more quantifiers required to solve a decision problem, the higher in the
arithmetic hierarchy it lies. Thus knowing at what level a decision problem lies tells us
something about what a solution to the problem must involve. In general, a decision prob-
lem is arithmetic if it can be solved using some finite number of existential and universal
quantifiers; the level in the arithmetic hierarchy is determined by the number of alternations
between existential quantifiers and universal quantifiers. A technical note is that all of these
quantifiers must be over natural numbers or other objects, such as words, which can be
represented by natural numbers. The halting problem cannot decide, for example, whether
there is a real number satisfying some equation, because there are uncountably many real
numbers. So knowing that a decision problem is arithmetic says that a solution does not
need to consider such higher-order objects.

2.3. Some open problems. Consider again the homeomorphism problem. When Markov
showed that, for n ≥ 4, the homeomorphism problem for n-manifolds is undecidable, he
showed that the halting problem is Turing reducible to the homeomorphism problem for
n-manifolds:

0′ ≤T HomeomoprhismProblem(n).
But we do not know whether the halting problem can be used to solve the homeomorphism
problem; the homeomorphism problem might be of higher Turing degree.2

Question 1. What is the Turing degree of the homeomorphism problem for n-manifolds,
presented as finite simplicial complexes, n ≥ 4?

2Note that it is not true, for n ≥ 4, that two n-manifolds, represented as finite simplicial complexes, are
homeomorphic if and only if the simplicial complexes have combinatorially equivalent subdivisions. This
claim was originally formed as a conjecture by Steinitz and Tietze and is known as the Hauptvermutung.
It is true for n ≤ 3 [Moi52], but was disproved in general by Milnor [Mil61]. If the Hauptvermutung were
true, then the homeomorphism problem for manifolds, represented as simplicial complexes, would have the
same degree as the halting problem because to determine whether two complexes are homeomorphic, we can
search for combinatorially equivalent refinements; the halting problem can decide whether such a search is
successful.
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For a given n, knowing the complexity of the homeomorphism problem for n-manifolds
tells us something about how one can classify manifolds. For n ≥ 5, n-manifolds can be
classified to some extent by surgery theory. A classification theorem for a class of objects
can lead to an improved upper bound on the computational complexity of the homeomor-
phism/isomorphism problem for those objects; so we propose (a) studying what sort of
upper bound on the homeomorphism problem can be obtained from surgery theory, and
(b) determining whether or not this upper bound is sharp. If the upper bound is sharp,
then this would mean that surgery theory is in some sense the best possible classification
of n-manifolds. (If the upper bound is not sharp then this would mean that surgery theory
does not yield the best possible classification of n-manifolds, though any reasonable proof
that it is not sharp would probably consist of giving a better classification.) For topological
4-manifolds, surgery theory does not give a classification. Can we show that the homeomor-
phism problem for 4-manifolds is very complicated, e.g., not arithmetic? A result like this
would show that 4-manifolds are inherently too complicated to have a good classification
theorem.

Another phenomenon that shows up in dimension ≥ 4 is that not all closed manifolds can
be represented as simplicial complexes [AM90, Man16b]. This issue of representations is
sometimes an important one in computability theory. It might be, for example, that it is
easier to classify closed manifolds which can be triangulated than it is to classify arbitrary
closed manifolds; if this were the case, then in order to truly measure the difficulty of
classifying arbitrary closed manifolds, one must consider non-triangulable closed manifolds.
There are also questions that only make sense to ask if we use other representations, such
as:

Question 2. Given a closed n-manifold, n ≥ 4, is it arithmetic to decide whether it is
triangulable?

In dimension 3, as in dimension 2, every closed manifold is triangulable, and so one could
still hope to prove the analog of Theorem 1.1. That construction crucially uses the Schoenflies
theorem, which says that the region bounded by any Jordan curve is homeomorphic to the
open unit disk. This fact does not generalise to three dimensions, and this is a barrier to
extending our results. We leave open:

Question 3. Does every closed 3-manifold have an arithmetic atlas?

We list some further open questions:

Question 4. Is it arithmetic to decide whether a given topological manifold admits a smooth
structure?

Question 5. Is it arithmetic to decide whether two embeddings of Sn in Rn+2 are equivalent,
n ≥ 2?

Finally, we suspect that our results have natural analogs in reverse mathematics (see, e.g.,
[Sim09]). For instance, perhaps ACA0 proves that every compact surface can be triangulated.
We leave the verification of this as an open problem.

3. Technical preliminaries

3.1. Computable Polish spaces. Recall that a Polish space is a separable completely
metrizable topological space; so every manifold is in particular a Polish space. One performs
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computations on objects via representations of those objects encoded as natural numbers.
Since Polish spaces typically have uncountably many points, we cannot represent each point
by a natural number. Turing had already realized this long ago when computing with the
real numbers; one must instead compute with approximations to a real number.

Definition 3.1. A real number α ∈ R is computable (Turing [Tur36, Tur37]) if there exists
a Turing machine that, given n ∈ N, outputs a rational r within 2−n of α.

Think of a computable real as one which has a computable Cauchy sequence converging
to it for which we know the rate of convergence. Given two computable reals, it is not
computable to decide whether they are equal. Similarly, we cannot compute the decimal
expansion of a given computable real—but this is only because reals which are very close
together can differ greatly in their decimal expansions, e.g., 1.00000 and 0.999990. (One has
the same sorts of issues when computing with floating point numbers in practice: one cannot
test for equality but only for approximate equality.)

In this definition, one is thinking of the reals R presented as the completion of the rationals
Q. We generalize this to arbitrary metric spaces:

Definition 3.2. A presentation of a Polish space X is a countable set M of points and a
metric d such that X is homeomorphic to the completion M of the metric space (M,d).

The presentation is a computable presentation (also called a computable metrization or a
computable Polish presentation) if M is a computable set and the metric d is computable,
that is, for every a, b ∈M , the distance d(a, b) is a computable real uniformly in a and b, and
such that X is homeomorphic to the completion M of M [Wei00].

For simple reading, we will define computable representations of various objects. There
are also corresponding definitions of 0(n)-computable representations or arithmetic represen-
tations; e.g., a 0(2)-computable presentation of a Polish space X = M is a metric space M
such that the metric d is 0(2)-computable. We will not make these definitions explicitly, but
they can easily be inferred by the reader.

Given a presentation X =M of a Polish space, we refer to the points of M as special points.
The presentation R = Q is a computable presentation of R using Q as the special points.
There are of course other possible presentations of R, though this is the most natural.

We represent the non-special points of X using fast Cauchy sequences from M . In a metric
space, we say that a Cauchy sequence (xi) is fast if d(xi, xi+1) < 2−i−1.

Definition 3.3. A name for a point x ∈ X =M is a fast Cauchy sequence (xi) of points in
M converging to x.

In a computably presented Polish space X =M , a computable name for x is a computable
sequence of points (xi) in M which is a fast Cauchy sequence coverging to x.

When we talk about the topology on X, we will use the open balls centered in special
points with rational radii.

Definition 3.4. While considering a presentation X =M of a Polish space, when we refer
to a basic open ball we mean a ball Br(x) with x ∈M and r ∈ Q. We use Dr(x) for the basic
closed ball (which is different from the closure of the open ball).

We also want to talk about continuous functions between spaces. Again, we want to
represent them by countable objects.
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Definition 3.5. Let f be a continuous function between Polish spaces X =M and Y = N .
A name of f is any collection of pairs of basic open balls (B,C) of X and Y respectively,
with rational radii and centers in M and N respectively, such that f(B) ⊆ C, and for every
x ∈M and every ε > 0 there exists (B,C) ∈ Ψ such that B ∋ x and r(C) < ε.

A function f ∶ X → Y between computably presented Polish spaces X,Y is computable if
it possesses a c.e. name. (Similarly, we say that is is A-computable, for A ⊆ ω, if it has an
A-c.e. name.)

Every continuous function has a name, and so is computable relative to some oracle. We
often abuse notation to write f for a particular name for f , writing, e.g., f ′ for the Turing
jump of the name for f . (We will never use derivatives in this paper, so we reserve f ′ for
the Turing jump.)

The above definition of a computable map is equivalent to saying that f is represented by
a Turing functional that maps fast Cauchy sequences to fast Cauchy sequences.

Lemma 3.6. Fix k ∈ ω. It is arithmetic (0(k+4)-computable) to say that one compact com-
putable Polish space X is 0(k)-computably homeomorphic to another compact computable
Polish space Y and to find such a homeomorphism.

By this we mean that the homeomorphism, in the one direction X → Y , has a 0(k)-
computable name. We will see in Claim 3.6.1 that the inverse from Y → X must then be
0(k+1)-computable.

Proof. Let X = M and Y = N be computable presentations of Polish spaces X and Y
respectively. It is sufficient to say that there is a 0(k)-computable continuous bijection; any
such map between compact spaces must have continuous inverse. Moreover, the inverse is
0(k+1)-computable.

Claim 3.6.1. If f ∶ X → Y is a computable homeomorphism between compact spaces, then
f−1 is 0′-computable.

Proof. This fact is well-known. (Indeed, under the assumption of effective compactness of
Y , one can computably reconstruct f−1, and it takes 0′ to enumerate all covers.) We give
a proof here to make our presentation self-contained. Our task is find a c.e. in 0′ name for
f−1. To do this, it suffices to find (c.e. in 0′), given y ∈ N and ε, a basic open ball Bδ(y) such
that f−1[Bδ(y)] ⊆ Bε(x).

Given y and ε > 0, look for x ∈M , δ ∈ Q, basic open balls Br1(x1), . . . ,Brn(xn) of X, and
basic open balls Bs1(y1), . . . ,Brn(yn) of Y , such that:

(1) The basic closed balls Dr1(x1), . . . ,Drn(xn) cover X −Dε/2(x);
(2) For each i, Bδ(y) and Bsi(yi) are formally disjoint (d(y, yi) > δ + si);
(3) For each i, f[Bri(xi)] ⊆ Bsi(yi) as determined by the name for f .

Then f−1[Bδ(y)] ⊆ Bε(x). Standard topological arguments show that for each x and ε, these
exist. (Note thatX−Bε/2(x) is compact.) It is for (1) that we use 0′; ifDr1(x1, r1), . . . ,Drn(xn)
do not cover X −Dε/2(x), then as X −Dε/2(x) −Dr1(x1) −⋯ −Drn(xn) is open, there must
be some element of the dense set M not contained in any of those basic closed balls, which
we can recognize by its distance from each of x,x1, . . . , xn. �

Given a continuous function f ∶X → Y , we can compute a function f̃ ∶M × ω → N such
that for each x ∈ M and n ∈ ω, d(f(x,n), f(x,n + 1)) < 2−n. Then f is surjective if and

only if limn f̃(M,n) is dense in N . (This is because continuous images of compact sets are
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compact, and compact subsets of Polish spaces are closed.) This can be decided using two

jumps of f̃ .
So now, using 0(k+3), search for a 0(k)-computable continuous function f ∶X → Y and

a 0(k+1)-computable g∶Y → X such that f and g are both surjective, as described in the
previous paragraph, and such that such that f ○ g and g ○ f are the identity. To see whether
f ○ g is the identity, consider the set of points

{y ∈ Y ∶ f(g(y)) = y}.
This set is closed, and so if f ○g ≠ IdY then this must be witnessed by one of the special points
in N . In particular, it is sufficient to check that f ○ g = IdY on N . This is not computable,
but it is Πf⊕g

2 and thus can be checked with two jumps of f and g.
This search is 0(k+3)-computable, and so 0(k+4) can decide whether it is successful. �

The two major obstacles we will have to face are that, in a Polish space X =M , the basic
open balls may not be connected and may not be simply connected. The results in the rest
of this section show that nevertheless we can handle them arithmetically.

Given two basic open balls Br(x) and Bt(y), there is a notion of formal containment of
Br(x) in Bt(y): that is, d(x, y) < t − r, which is an ∃-condition. (Similarly, a basic closed
ball Dr(x) is formally contained in a basic open ball Bt(y) if d(x, y) < t − r.) However, it
is possible that Br(x) ⊆ Bt(y) without formal containment, indeed if r = t and x = y we do
not get formal containment. We could get away with formal inclusion throughout, but for
our purposes the somewhat blunt Lemma 3.8 below (as well as its relativised versions) will
suffice. More specifically, we note that in the compact case containment is an arithmetic
relation. We can also prove this for arbitrary open sets, not just basic open sets, for which
we need the following definition.

Definition 3.7. Let U be an open set of a Polish space X = M . A name of U is any
collection of basic open balls B1,B2, . . . of X, with rational radii and centers in M , such that
U = B1 ∪B2 ∪⋯.

An open set U of a computably presented Polish space X is computable if it possesses a
c.e. name. (Similarly, we say that U is A-computable, for A ⊆ ω, if it has an A-c.e. name.)

Then we show:

Lemma 3.8. Let M be a compact Polish space and U,V computable open sets. It is arith-
metic (0(3)-computable) to decide whether U ⊆ V .

Proof. Suppose that U is the union of a computable collection U of basic open sets and V is
the union of a collection V of basic open sets. We claim that U ⊆ V if and only if for every
Bδ(x) ∈ U and every δ′ < δ, there are basic closed balls C1, . . . ,Cn and V1, . . . , Vn ∈ V such

that each Ci is formally contained in Vi and C1, . . . ,Cn cover Bδ′(x). This is 0(3)-computable

because the property “C1, . . . ,Cn is a cover of Bδ′(x)” is Π0
1: C1, . . . ,Cn fail to cover Bδ′(x)

if and only if there is a special point in Bδ′(x) which is not covered by the Ci.
3

We have that U ⊆ V if and only if every Bδ(x) ∈ U is contained in V , and Bδ(x) is
contained in V if and only if

∀δ′ < δ Bδ′(x) ⊆ V.
3Note that it is important here that we use the closure of the open ball, rather than the closed ball, as

C1, . . . ,Cn may fail to cover the closed ball Dδ′(x) without there being a special point of Bδ(x) witnessing
this.
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Finally, by compactness, Bδ−ε(x) ⊆ V if and only if there is a finite cover C1, . . . ,Cn of Bδ−ε(x)
by basic closed balls such that each Ci is formally contained in some basic open set making
up V . (To see this, use the fact that if a basic open ball is formally contained in some other
basic open ball, then the corresponding basic closed ball is also formally contained.) �

Using the same ideas we can check containment of closures.

Lemma 3.9. Let M be a compact Polish space and U,V computable open sets. It is arith-
metic (0(2)-computable) to decide whether U ⊆ V .

Proof. Similarly to the previous lemma, U ⊆ V if and only if there is a finite cover C1, . . . ,Cn
of U (and hence of U) by basic closed balls such that each Ci is formally contained in
some basic open set making up V . If C1, . . . ,Cn do not cover U , there is a special point in
U −C1, . . . ,Cn. �

Next we will prove some facts about connectedness. The main issue we will face is that
basic open balls might not be connected. In this subsection we explain how to arithmetically
replace basic open balls with the connected components of their centers. We show that given
an open ball and a point x in that ball, we can construct the path-connected component of
x in the ball. This path-connected component is itself an open set.

The setting here will be that of a compact surface, so that for open sets the notions of
connectedness and path connectedness are synonymous. (This, however, fails for closed sets
in general.)

Lemma 3.10. Given a point x of a compact computably metrised surface X = M and a
basic open ball B ∋ x, we can arithmetically find an open set U ∋ x, U ⊆ B, such that U is
the path-connected component of x in B. Moreover, U has a 0(4)-computable name.

Proof. For the proof, we use the notion of an ε-path. Given a, b ∈ M , an ε-path from a
to b is a sequence of steps from a to b such that each step has distance at most ε: points
c1 = a, c2, . . . , cn−1, cn = b of M such that d(ci, ci+1) < ε for each i.

The first (naive) attempt would be to claim that, in a basic open ball, a and b are connected
by a path if, and only if, there is an ε-path between these point, for every ε > 0. However,
there might be two path-connected components of a basic open Bκ(c) which are arbitrarily
close to each other, as on the left of the diagram below.

x=c1 y=c6c2 c3 c4 c5 x yBκ: Bδ:

By shrinking Bκ to Bκ−δ as on the right of the diagram, we separate these two components,
and for small enough ε there is no longer an ε-path from x to y. This motivates the following
definition.

Let x ∈ B = Bκ(c). Say that x ∼ y if there is a δ > 0, δ < κ, such that x, y ∈ Bδ(c) and for
all ε > 0, there is an ε-path from x to y in Bδ(c).
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Claim 3.10.1. x ∼ y if and only if there is a path from x to y in B = Bκ(c).

Proof of claim. If there is a path from x to y in Bκ(c), this path is a closed set in Bκ(c).
Consider the supremum of the distances between c and the points on this path; since the
path is a compact set, this maximum distance is achieved by some point on the path, and
the distance is < κ. Take δ < κ but greater than this maximal distance. The path will still
be in Bδ(c). We can choose a finite sequence of special points near the path giving an ε-path
from x to y in Bδ(c). (See Proposition 4.5 for a more complicated version of this argument.)

Suppose there is no path from x to y in Bκ(c), but there exists a δ < κ such that x, y ∈ Bδ(c)
and for all ε > 0, there is an ε-path from x to y in Bδ(c). Let Cx and Cy be the path-connected
components of x and y in Bκ(c). These sets are closed in Bκ(c) but need not be closed in
the ambient space, however, Cx and Y = Bκ(c) ∖ Cx ⊇ Cy are relatively clopen in Bκ(c).
Given closed subsets C and D the distance between C and D is defined by the formula
dist(C,D) = infc∈C,d∈D d(c, d).

If dist(Cx, Y ) > ε > 0 then there is no ε/4-path from x to y in Bκ(c), let alone Bδ(c). If
dist(Cx, Y ) = 0, then consider the closures Cx and Y of Cx and Y in X. By compactness,
it must be the case that Cx ∩ Y ≠ ∅, and indeed each z ∈ Cx ∩ Y must be at distance
exactly κ from the centre c of Bκ(c), for otherwise we would have z ∈ Bκ(c) contradicting
that Cx and Y are relatively clopen in Bκ(c). Repeat this argument for Bδ(c) to see that
dist(Cx ∩Bδ(c),Bδ(c)∖Cx) cannot be 0 (as long as both sets are non-empty) for any choice
of δ < κ. Indeed if it was then, in the notation above, we would be able to find a common

limit point z ∈ Bκ(c) ⊇ Bδ(c) of Bx and its compliment. This contradicts the fact that Cx
and Y are relatively clopen in Bκ(c). It therefore must be the case that for each δ < κ there
is ε > 0 such that dist(Cx ∩Bδ(c),Bδ(c) ∖Cx) > ε > 0, and so there is no ε/4-path from x to
y in Bδ(c),. �

An open set V is contained in the connected component of x (in B) if and only if every
special point y of V has x ∼ y. So we can arithmetically define the connected component of
x in B to be the collection of all basic open balls C formally contained in B such that x ∼ y
for every special point y ∈ C. Looking at the definition of ∼, 0(4) can list these basic open
balls. �

In a locally path-connected space, the path-connected component of each point is open
(since each point is contained in the component together with a small enough path-connected
neighbourhood). As we already mentioned above, for open sets of such spaces, their path-
connected components and their connected components coincide. In particular, each (path-
)connected component of a basic open ball is open.

Definition 3.11. We write Bcon
r (x) for the (path-)connected component of x in the open

ball Br(x). We call Bcon
r (x) the basic connected open set centered at x with radius r.

3.2. Computability and manifolds. Every topological manifold is a Polish space, so by
a (computable) presentation of a manifold we just mean a (computable) presentation as a
Polish space. We also define computable atlases and triangulations.

Definition 3.12. Let X = M be a computable presentation of a manifold. A computable
atlas for X is a computable sequence (Ui, fi)i∈ω of (names for) computable open sets Ui and
computable homeomorphisms fi∶Ui → Vi ⊆ R. We call each such pair Ui, fi a computable
chart.
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Definition 3.13. Let X = M be a compact manifold. A computable triangulation of X is
a finite simplicial complex K, homeomorphic to X, together with a computable homeomor-
phism h ∶ ∣K ∣→X.

3.3. Jordan curves. In this paper we will rely heavily on the properties of Jordan curves.
Recall that a Jordan curve is a continuous closed curve ϕ∶ [0,1]→ R2 with no self-intersections
except ϕ(0) = ϕ(1); and a Jordan arc is a continous curve [0,1] → R2 with no self-
intersections. Of course the reader will recall the Jordan curve theorem:

Theorem 3.14 (Jordan curve theorem). Every Jordan curve in R2 separates the plane into
two disconnected regions, exactly one of which is unbounded.

We call the bounded region the interior of the Jordan curve, and the unbounded region the
exterior. On a closed surface, we have a similar notion of Jordan curve and arc, and every
Jordan curve separates the surface into two disconnected regions, but both are bounded. We
will still talk about the interior and exterior of the curve and let context determine which is
which.

Jordan curves can be very complex. For example, there are Jordan curves that are nowhere
differentiable and have positive two-dimensional measure. See [Sag94, Chapter 8] for several
such examples. Nevertheless, up to homeomorphism of the ambient space, all Jordan curves
are essentially the same.

Theorem 3.15 (Schoenflies theorem). If C ⊂ R2 is a Jordan curve, then there is a homeo-
morphism f ∶ R2 → R2 such that f(C) is the unit circle in the plane.

Thus conveniently, whenever we produce Jordan curves in our construction, we will always
know what they “look like”. In R3 there are counterexamples to teh generalization such
as Alexander’s horned sphere, see, e.g., [Moi77]. As we have already mentioned in the
introduction, this is one of the main barriers to generalising our results to 3-manifolds. (The
Jordan curve theorem does generalize to three dimensions.)

The well-known radial extension theorem below, which can be viewed as a special case of
Alexander’s trick, will allow us to work with Jordan arcs and curves and not worry too much
about the regions that they bound.

Theorem 3.16. Every homeomorphism of the boundary sphere Sn−1 can be extended to a
homeomorphism of the n-dimensional ball Dn.

We use the combination of the above facts frequently in the following sort of situation.
Suppose that we have a Jordan curve (which, by the Schoenflies theorem, we may assume
is the unit circle S1) and a Jordan arc from one point on the curve, through the interior,
to another point on the curve. Then any two such figures are homeomorphic, regardless of
which interior arc we choose. For example, there is a homeomorphism of the plane which
maps the two figures below to each other, e.g., mapping the region A onto the region A′ and
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the region B onto the region B′.

A

B

A′

B′

≅

The same is true for any similarly constructed figures. We will use this fact implicitly
throughout.

Now of course we want to bring computability in. We prove a few simple results about
Jordan arcs.

Definition 3.17. Let X =M be a computably presented Polish space. A computable Jordan
arc in X is a computable homeomorphism f ∶ [0,1]→X with no self-intersections.

Lemma 3.18. Let X =M be a computably presented Polish space. We can compute, given
ε > 0 and a Jordan arc (or curve) J in X, a finite cover of J by basic open balls which is
contained within the ε-neighbourhood of J .

Proof. Search for finitely many pairs (B1,C1), . . . , (Bn,Cn) in the name for J ∶ [0,1] → X,
with each Ci of radius at most ε/2, such that B1 ∪⋯∪Bn covers [0,1]. Each Bi is a rational
ball, so we can computably decide whether this happens. Then C1, . . . ,Cn cover J . Since
each Ci is of radius < ε/2 and intersects J , they are contained in the ε-neighbourhood of
J . �

Remark 3.19. We can then use Lemma 3.8 to test whether a given collection U1, . . . , Un of
open sets covers J : since J is compact, every open cover of J contains the ε-neighbourhood
of J for some ε.

Lemma 3.20. Let X =M be a computably presented Polish space. Using 0′ we can compute,
given two computable Jordan arcs J and K in X, whether J and K have an intersection,
and if they do, we can find the first such intersection on J .

Proof. If J and K do not intersect, then there is a some distance between the two, and so for
some ε, their ε-neighbourhoods are disjoint. Thus, for sufficiently small ε, the open covers
obtained by Lemma 3.18 will be disjoint. Of course, if J and K do intersect, then every
open cover of J intersects every open cover of K.

We now argue that this can be checked with 0′. Instead of checking if the covers are
disjoint, search for covers that are formally disjoint. This means that, for any ball Br(c) of
the first cover and every ball Bq(d) of the second cover, we have d(d, c) > r + q. Since the
arcs are compact sets, if they are disjoint then there is a non-zero distance between these
arcs. Thus, it is not hard to see that such covers exist.
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Now supposing that J and K do intersect, we want to find the least x ∈ [0,1] such that
J(x) is on K. We can compute x by a sort of binary search. First ask 0′ whether J↾[0, 1

2
]

intersects K; if it does, then x ∈ [0, 12]. Otherwise, x ∈ [12 ,1]. Continuing in this way, we can
compute x. �

A similar argument gives:

Lemma 3.21. Let X =M be a computably presented Polish space. Using 0′ we can compute,
given a computable Jordan arc J in X and a point a, whether a is on J , and if it is, compute
x such that J(x) = a.

Now we show that we can find names for the interior and exterior of a Jordan curve. Note
that the lemma also applies to Jordan curves in R2, since each such curve lies within some
closed disk.

Lemma 3.22. On a compact surface X = M , suppose N is a Jordan region bounded by a
0(t)-computable Jordan curve C, where t > 3. Then N has a 0(t)-computable name as an
open set.

Proof. Begin by picking a connected basic open ball B0 contained in N . (This differentiates
between “inside” and “outside” C.)

At each stage s, using the uniform continuity of the Jordan curve as a continuous function
[0,1] → C, we can cover C by finitely many basic open balls of radius 1/s, the centers of
which are of distance at most 1/s from a point of C. (This requires 0(t).) Let Cs be this
open cover of C. If so far by stage s we have found connected basic open balls B0, . . . ,Bk

in N , put a basic open ball B into N if it does not intersect Cs, but intersects B0 ∪⋯ ∪Bk.
This requires 0(4) by Lemma 3.10; note that seeing whether two open sets intersect is c.e. in
their names. At the end, we will have covered N by basic connected open balls. We need
0(4) in order to write the basic connected open balls as unions of basic open balls. �

4. Arithmetic Atlases and the Proof of Theorem 1.1

Our goal in this section is to prove Theorem 1.1: for topological surfaces one can recon-
struct the coordinate charts in an arithmetic way. We fix a compact computable metrized
surface X =M throughout the section.

In what follows, some parts of the most tedious proofs will contain additional explanations which
are formatted in the same way as this remark is. Most of these explanations can be skipped at
the first reading. Indeed, most of these remarks can be completely skipped by the reader if they
do not need to see any further details at all. Nonetheless, some of these comments contain
sufficiently subtle calculations and explanations.

4.1. Overview of the proof. The main technical step in the proof of Theorem 1.1 is to
show that one can approximate Jordan arcs by arithmetic Jordan arcs. This is done using
sequences U1, . . . , Un of connected open sets, each with small diameter, such that each ball
intersects the next. One can then refine such a sequence to a sequence of smaller diameter,
and so on, yielding in the limit a Jordan arc.

Ô⇒ Ô⇒
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There are a number of technical details involved in making sure that the limiting process
works, and moreover to have the arithmetic Jordan arc begin and end at specific points, or
to have it not cross some other arithmetic Jordan arc, and so on.

The next step is to define the domain of each chart in the atlas. The domain of each chart
will be the open region bounded by an arithmetic Jordan curve. The fact that each Jordan
curve can be approximated by an arithmetic Jordan curve will allow us to arithmetically
cover the surface with such regions. Recall that a region in R2 bounded by a Jordan curve
is homeomorphic to the open unit disk; and if X is indeed a compact surface then we can
cover the surface X by finitely many such curves. Since such a covering exists, we will be
able to search for one that works.

On the domain of each chart, we must define a homeomorphism with a subset of R2. The
boundary of the domain is given by a Jordan curve, which we can think of as homeomorphic
to the boundary of the unit square. The idea here is to cover the interior of the Jordan curve
with “horizontal” and “vertical” gridlines, such that the horizontal gridlines do not intersect
each other, the vertical gridlines do not intersect each other, and each pair of horizontal
and vertical gridlines intersect exactly once. Moreover, we ensure that every pair of points is
separated by some gridline. We can use such gridlines to build a homeomorphism. This is the
most challenging step in the proof, because we must keep the procedure computable relative
to some fixed 0(k), but it seems that the more gridlines we introduce the more complex
properties we will have to check (because we have to have the new gridlines have the right
intersection properties with previous gridlines), so the complexity seems to go all the way
up to 0(ω). In order to keep a bound on the complexity, we must be more clever—but we
leave this until later.

4.2. Approximations of Jordan arcs. Our goal is to show every Jordan arc can be ap-
proximated by an arithmetic Jordan arc. Unless otherwise specified, the setting for all of
the results is a computably presented surface X =M .

The first step is to replace a Jordan arc by a sequence of open balls approximating it.

Definition 4.1. An ε-arc consists of open sets U1, . . . , Un such that:

(1) Each Ui is a basic connected open set Bcon
δ (x), δ < ε (see Def. 3.11);

(2) Ui ∩Ui+1 ≠ ∅;
(3) Ui ∩Uj = ∅ for ∣i − j∣ > 1.

Let a and b be special points in M . An ε-arc U1, . . . , Un is from a to b if a ∈ U1 and b ∈ Un.

Remark 4.2. Given ε and basic connected open sets U1, . . . , Un, we can use 0(5) to decide
whether U1, . . . , Un are an ε-arc (or an ε-arc from a to b). Recall that the Ui, as basic
connected open sets, are 0(4)-computable, and of course two open sets intersect if and only
if there is a special point that belongs to both sets.

If an ε-arc is supposed to approximate a Jordan arc, then it perhaps should at the very
least contain a Jordan arc. This is indeed the case because each Ui is connected, U1 ∪⋯∪Un
is connected by (2). One would also hope that such an arc can be chosen so that once it
leaves Ui it will never goes back to Ui. This is not the case. Note that after the arc leaves
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Ui, it might have to return to Ui, as illustrated on the diagram below.

U1
U2

U3

U4

Every Jordan arc through this ε-arc must either leave U2 and then later enter it again (as
the arc shown does), or leave U3 and then later enter it again. The best we can do is the
proposition below: We can choose an arc so that once the arc leaves U2 it never again returns
to U1, and once it leaves U3 it never again returns to U2, etc.

Proposition 4.3. Let U1, . . . , Un be an ε-arc from a to b. Then there is a Jordan arc from
a to b contained in U1 ∪ ⋯ ∪ Un. Moreover, once the arc leaves Ui+1, we can choose it to be
entirely in Ui+1, Ui+2, Ui+3, . . ., and so it never returns to Ui.

Proof. Since Ui and Ui+1 intersect for each i, and each Ui is connected, U1∪⋯∪Un is connected,
hence path-connected. Since a ∈ U1 and b ∈ Un, there is an arc from a to b in U1 ∪ ⋯ ∪ Un.
Indeed, we can choose x1, . . . , xn−1 in M such that x1 ∈ U1 ∩ U2, x2 ∈ U2 ∩ U3, and so on,
and then choose Jordan arcs J1 from a to x1 in U1, J2 from x1 to x2 in U2, and so on, up
to Jn from xn to b in Un. Now the concatenation J of J1, J2, . . . , Jn might not be a Jordan
arc because it might be self-intersecting. It does, however, have the property that once the
curve leaves Ui+1, it is contained in Ui+1, Ui+2, Ui+3, . . .. This is by (2) of Definition 4.1.

Now we want to remove the intersections between the different Ji, e.g., as in the following
example:

x3
b

a x2x1

J1 J2
J3

J4

Each Ji can only intersect with Ji+1 and Ji−1 (by (3) of Definition 4.1), in Ui−1 and Ui+1
respectively. Moreover, the set of intersections of two Jordan arcs is a closed set, so there is
a first (on Ji) intersection of Ji and Ji+1. Replace J1 by a new Jordan arc which is the subarc
of J1 ending at the first intersection of J1 and J2, and replace J2 by the subarc beginning at
the that intersection point. Thus we may assume that J1 and J2 do not intersect, except at
their endpoints. We may do the same for each other pair of arcs Ji and Ji+1. After making
these replacements, the concatenation J of J1, J2, . . . , Jn is a Jordan arc. It inherits the
property that once the curve leaves Ui+1, it is contained in Ui+1, Ui+2, Ui+3, . . .. �
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Our next step is to show that a Jordan arc can be approximated by an ε-arc. In order to say
that the ε-arc is close to the Jordan arc, we ask that it be contained in some neighbourhood
of the Jordan arc.

Definition 4.4. Let N be an open set. If U1, . . . , Un is an ε-arc, we say that it is contained
in N , or that N is a neighbourhood of the ε-arc, if U1, . . . , Un are contained in N .

Of course, each Jordan arc, without any computability assumptions, has a computable
open neighbourhood: by compactness, J is contained within finitely many basic open balls.
Now, given a Jordan arc and a neighbourhood, we approximate the Jordan arc by an ε-arc
in the neighbourhood. 4

Proposition 4.5. Let J be a Jordan arc from a to b contained in a neighbourhood N . Let
ε > 0. Then there is an ε-arc U1, . . . , Un from a to b contained in N . Moreover, if A and B
are open sets containing a and b respectively, we may choose U1 ⊆ A and Un ⊆ B.

Proof. Fix a parameterization f ∶ [0,1]→ J of J . We may assume that ε < d(a, b)/4.
Cover J ∩N with basic connected sets Bcon

r (c) ⊆ N , with each c a special point of M , and
each radius a rational number r < ε. Since J is compact, there are finitely many of these
open sets Bcon

r1 (c1), . . . ,Bcon
rn (cn) that cover J . It is possible to ensure that a ∈ Bcon

r1 (c1) ⊂ A
and b ∈ Bcon

rn (cn) ⊂ B. Let Ui = Bcon
ri

(ci).
Before we proceed, we give an intuitive explanation of a potential issue and how to fix

it. Note that J ∩ U1 does not have to be connected; however, U1 is connected (and thus
path-connected). For example, the cover might look like this:

a b
U1

U2

U3

U4 U5

J

We are violating both (2) and (3) of Definition 4.1, and there is no way to use these basic
connected open sets to give an ε-arc containing the Jordan arc J . Luckily, we are allowed
to find an ε-arc that does not contain J . We can make a “shortcut” and skip the part of J
which is in U2, using U1, U3, U4, U5 as the ε-arc. Note that as a ∈ U1 and b ∈ Un, our ε-arc will
start and end with these open sets.

More formally, we do the following. Let di0 be the rightmost limit point of U1 along the
arc J . More formally, let t = sup f−1(U1 ∩ J). Since ε < d(a, b)/4, b ∉ U1 and so t < 1, and
t ∉ f−1(U1 ∩ J). Let di0 = f(t); di0 ∉ U1, but di0 is on the boundary of U1. Similarly, let di be
the rightmost limit point of Ui along J .

Since the Ui cover J , we can choose i1, . . . , ik such that

4Later in the proof, we will also have to deal with the situation when we need to construct an arc from a
to b where a, b are merely on the boundary of an open N . It seems to the authors that we cannot do this
arithmetically for general N . Luckily, our neighbourhoods N will always be Jordan regions, which have the
property that if a is on the boundary of N , and U is an open set containing a, then U ∩N has exactly one
connected component with a on its boundary. This component can be defined arithmetically.
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(1) di0 ∈ Ui1 ;
(2) dij ∈ Uij+1 for j < k; and
(3) dik ∈ Un.

We can choose Ui1 because di0 ∉ U1. Given Ui1 , . . . , Ui` , if di` ∈ Un then we are done. Other-
wise, there is some Ui`+1 ∋ di` . Note that f−1(di0) < f−1(di1) < ⋯ < f−1(dik) and i0, . . . , ik are
distinct. Clearly, the process described above must end.

Let Vj = Uij . So for V0 = U0, V1, . . . , Vk, Vk+1 = Un we have that

(1) Each Vi is a basic connected set of radius < ε contained in N ;
(2) Vi ∩ Vi+1 ≠ ∅.

For (2), this is because Uij+1 is a neighbourhood of dij and so Uij+1 intersects Uij .

We are missing the third part of being an ε-arc, namely that Vi ∩ Vj = ∅ for ∣i − j∣ > 1.
Define W0 = V0. Supposing that we have defined W0, . . . ,Wt, we define Wt+1 to be Vi for
the greatest i such that Wt ∩ Vi ≠ ∅. (Note that if Wt = Vj, then as Vj ∩ Vj+1 ≠ ∅, i > j;
so the sequences of W ’s is a subsequence of the sequence of V ’s.) Continue until we define
Wt+1 = Vk+1 = Un. The resulting sequence is an ε-arc from a to b contained in N . �

Recall that to construct an arithmetic Jordan arc, we want to build a sequence of more
and more refined ε-arcs. We need to define what it means for an ε′-arc to refine an ε-arc.
Essentially this should mean that ε′ < ε and that each open set of the ε-arc is split into many
balls in the refining ε′-arc.

Definition 4.6. Let 0 < ε′ < ε. An ε′-arc V1, . . . , Vm refines an ε-arc U1, . . . , Un if there are
1 = t1 < ⋯ < tm−1 < tm =m such that for each i:

(1) ti+1 − ti ≥ 2,
(2) Vti ⊆ Ui, and
(3) for each j with ti < j < ti+1 we have either Vj ⊆ Ui or Vj ⊆ Ui+1.

We would really like to have that the first few Vi are contained in U1, then the next few
Vi are contained in U2, and so on; but this might not be possible, due for example to the
situation described just after the statement of Proposition 4.3.

Remark 4.7. Given an ε-arc U1, . . . , Un and an ε′-arc V1, . . . , Vm, we can use 0(6) to decide
whether V1, . . . , Vm refines U1, . . . , Un. This is because these are all 0(4)-computable open
sets, and we check containment using Lemma 3.9.

For ε′ < ε, each ε-arc can be refined to an ε′-arc.

Proposition 4.8. Let 0 < ε′ < ε and let U1, . . . , Un be an ε-arc from a to b. Let A and B
be open sets containing a and b respectively. Then there is an ε′-arc V1, . . . , Vk from a to b
refining U1, . . . , Un, with V1 ⊆ A and Vk ⊆ B.

Proof. Let J ⊆ U1∪⋯∪Un be a Jordan arc from a to b obtained from Proposition 4.3. Once J
leaves Ui+1, it does not return to Ui. We can cut J up into non-trivial arcs J1, . . . , Jn−1 such
that J1 ⊆ U1∪U2, J2 ⊆ U2∪U3, and so on, so that J is the concatenation J1 → J2 → ⋯→ Jn−1.
Let c1 = a, c1, . . . , cn−1, cn = b be the endpoints of these arcs, so that J1 is from c1 to c2, J2 is
from c2 to c3, and so on, and ci ∈ Ui. By reducing ε′, we may assume that 8ε′ is less than, for
each i, the (positive) distance between the (disjoint) arcs J1 → ⋯→ Ji−1 and Ji+1 → ⋯→ Jn−1.

For each ci, choose a basic connected open set V ∗
i ∋ ci of radius < ε′, with V ∗

i ⊆ Ui, and
with V1 ⊆ A and Vn ⊆ B. Now divide each Ji up into three arcs J∗i , J

∗∗
i , J∗∗∗i such that J∗i
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starts at ci and is contained entirely in Vi and J∗∗∗i ends at ci+1 and is contained entirely in
Vi+1. All three arcs should be non-trivial; let di ∈ Ui be the right endpoint of J∗i (and the left
endpoint of J∗∗i ) and let ei ∈ Ui+1 be the right endpoint of J∗∗i (and the left enpoint of J∗∗∗i ).
Let 0 < ε′′ < ε′ be such that ε′′ is less than the distance between each J∗∗i and J∗∗j , i ≠ j.

TODO: PICTURE
By Proposition 4.5, for each i = 1, . . . , n−1, we can find an ε′′-arc W i

1, . . . ,W
i
ki

from di to ei

within Ui∪Ui+1 and also within the ε′′-neighbourhood of J∗∗i . We may also have W i
j ⊆ Ui∪Ui+1

by choosing the ε′′-arc within a sufficiently small neighbourhood of J∗∗i .
Choose 1 ≤ `i < ri ≤ ki such that `i is greatest such that Vi intersects W i

`i
and ri ≥ `i is the

least such that Vi+1 intersects W i
ri

. Since di ∈ Vi ∩W i
1 and ei ∈ Vi+1 ∩W i

ki
, such `i and ri exist.

We have `i < ri because ci and ci+1 are of distance at least 8ε′ from each other, and each of
Vi,W i

1, . . . ,W
i
ki
, Vi+1 have diameter at most ε′.

Similarly, because 8ε′′ < 8ε′ is less than the distance between the J∗∗i for different i, there
are no intersections between the W i

j for different i (and a similar argument also shows that

there are no intersections between the W i
j and the Vi′ , for i′ ≠ i, i+ 1, between W i

j and Vi for
j > `i, etc.). Then

V1,W
1
`i
, . . . ,W 1

ri
, V2,W

2
`2
, . . . ,W 2

r2 , V3, . . . , Vn

is the desired ε′-arc from a to b, with t1 = 1, t2 = 2+ (1+ r1 − `1), t3 = 3+ (2+ r1 + r2 − `1 − `2),
and so on, witnessing that it refines U1, . . . , Un. (Here ti is the index of Vi in this list.) �

Finally, we put everything together to show that a Jordan arc can be approximated by
an arithmetic Jordan arc. Essentially, we approximate the Jordan arc by more and more
refined ε-arcs, and show that the limit of such ε-arcs is a Jordan arc.

Theorem 4.9. Let J be a Jordan arc from arithmetic points a to b and N an arithmetic
neighbourhood of J . Then there is an arithmetic Jordan arc from a to b contained in N . (If
a and b are 0(t)-computable, then we get a 0(t+7)-computable Jordan arc.5)

Proof. Let a = ⋂Ai be a 0(t)-computable name for a, and b = ⋂Bi be a 0(t)-computable name
for B.

By Proposition 4.5 there is a 1-arc U1
1 , . . . , U

1
k1

from a to b contained in N , with U1
1 ⊆ A1

and Uk1
1 ⊆ B1. We can find such a 1-arc arithmetically. Then, by Proposition 4.8, for each n

we can find a 1/2n-arc Un
1 , . . . , U

n
kn

from a to b contained in N refining Un−1
1 , . . . , Un−1

kn−1
, with

U1
n ⊆ An and Ukn

n ⊆ Bn. Again, we can find these arithmetically.
We can find U1

1 , . . . , U
1
k1

non-uniformly. Using 0(t) we can compute the names for a and b. Note

that the Uni are basic connected open sets, and hence are 0(4)-computable. We use Remarks 4.2
and 4.7 together with Lemmas 3.8 and 3.9 to check containments. The containments we check
are of 0(4)-computable basic connected open sets in 0(t)-computable open sets, and so a bound
one the complexity of doing this is 0(t+7). So we can compute the sequence of ε-arcs using 0(t+7).

We can transform these ε-arcs into a finitely branching tree, with the children ordered from
left to right. Each node at level n on the tree will be an open set which is the union of
two consecutive basic connected open sets from the 1/2n-arc. The children of the root node
will be U1

1 ∪ U1
2 , U

1
2 ∪ U1

3 , . . . , U
1
k1−1

∪ U1
k1

, ordered from left to right in that order. At the
nth level of the tree, the nodes will be Un

1 ∪Un
2 , U

n
2 ∪Un

3 , . . . , U
n
kn−1

∪Un
kn

, from left to right.
Since Un+1

1 , . . . , Un+1
kn+1

is a refinement of Un
1 , . . . , U

n
kn

, there are 1 = tn1 < ⋯ < tnkn = kn+1 as in

5Note that the complexity of N does not affect the complexity of the arithmetic Jordan arc, though of
course one needs a name for N in order to find the arc uniformly in the inputs.
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Definition 4.6, i.e., such that Un+1
ti

⊆ Un
i and for each tni < j < tni+1, Un+1

j ⊆ Un
i or Un+1

j ⊆ Un
i+1.

We put Un+1
tni

∪Un+1
tni +1

, . . . , Un+1
tni+1−2

∪Un+1
tni+1−1

, Un+1
tni+1−1

∪Un+1
tni+1

as children of Un
i ∪Un

i+1, in that order

from left to right. Since tni+1 − tni ≥ 2 this tree has no dead ends and each node has at least
two children.

By Lemmas 3.8 and 3.9 we can build the tree using 0(t+7).

Each path through this tree corresponds to a point, because: (a) the open sets at level
n are contained within balls of radius at most 1/2n−1 (as the open sets at level n are the
union of two intersecting open sets, each contained within a ball of radius 1/2n), and (b) if
Un+1
j ∪Un+1

j+1 is a child of Un
i ∪Un

i+1, then

Un+1
j ∪Un+1

j+1 = Un+1
j ∪Un+1

j+1 ⊆ Un
i ∪Un

i+1.

When j = ti+1 − 1 or j + 1 = ti+1, we must use (2) of Definition 4.6 to see this; otherwise we
use (3). The infinite paths through the tree are homeomorphic to a Cantor space C. So we
have a map f ∶C → M mapping a path through the tree to the unique corresponding point
of M . This map is easily seen to be continuous.

There is a surjective continuous map π∶C → [0,1]. (Think of elements of C as binary or
decimal (etc.) expansions, with each digit in a different base depending on the branching of
the tree, and the base of the next digit depending on the previous digit.) We claim that if

π(x) = π(y), then f(x) = f(y), so that f induces a continuous map f̃ ∶ [0,1] → M . Indeed,
π(x) = π(y) if and only if there is some node σ with two children ρ1 and ρ2, with ρ1 just
to the left of ρ2, such that (without loss of generality) x is the rightmost path through ρ1
and y is the leftmost path through ρ2. Then if x the path V1 ⊇ V2 ⊇ V3 ⊇ ⋯, and y is the
path W1 ⊇ W2 ⊇ W3 ⊇ ⋯, then because for each n there is i such that Vn = Un

i ∪ Un
i+1 and

Wn = Un
i+1 ∪ Un

i+2 we have Vn ∩Wn ≠ ∅ for every n. This means that the unique element of
⋂Vn is the same as the unique element of ⋂Wn, and so f(x) = f(y).

It should be clear that f̃ ∶ [0,1] → M is computable from the tree T . We claim that

f̃ ∶ [0,1]→M is a Jordan arc from a to b contained inside N .

Claim 4.9.1. f̃ is injective.

Proof. Suppose that f̃(x) = f̃(y), with x, y ∈ C, say x < y. Then if x corresponds to the
path of open sets (Vn), and y corresponds to the path of open sets (Wn), it must be that

Vn∩Wn ≠ ∅ for each n, as f̃(x) ∈ Vn+1 ⊆ Vn and f̃(y) ∈Wn+1 ⊆Wn. This can only happen if for
every n there is i such that Vn = Un

i ∪Un
i+1 and either Wn = Un

i+1∪Un
i+2 or Wn = Un

i+2∪Un
i+3 (recall

x < y). We will argue that because this is true for all n, it must be that Wn = Un
i+1 ∪Un

i+2.
Indeed, suppose that Wn = Un

i+2∪Un
i+3. Then Vn+1 = Un+1

j ∪Un+1
j+1 for some j with tni ≤ j < tni+1

and Wn+1 = Un+1
k ∪ Un+1

k+1 for some k with tni+2 ≤ k < tni+3. Since ti+2 − ti+1 ≥ 2, k − (j + 1) ≥ 2.
Thus Vn+1 = Un+1

j ∪ Un+1
j+1 and Wn+1 = Un+1

k ∪ Un+1
k+1 are disjoint, giving a contradiction. We

conclude that Wn = Un
i+1 ∪Un

i+2.
Since for all n, Vn and Wn are adjacent nodes at the nth level of the tree, x and y are

adjacent in the Cantor space C, so their images π(x) = π(y) in [0,1] are equal. Thus f̃ is
injective. �

Claim 4.9.2. f̃(0) = a and f̃(1) = b.
Proof. We argue that f̃(0) = a; f̃(1) = b for similar reasons. Note that 0 corresponds to the

leftmost path in C, so that f̃(0) is the unique element of ⋂Un
1 . We have Un

1 ⊆ An for each
n, so that ⋂Un

1 = {a}. �
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Claim 4.9.3. For x ∈ [0,1], f̃(x) ∈ N .

Proof. We have that f̃(x) ∈ U1
1 ∪⋯ ∪U1

k1
⊆ N . �

Thus f̃ ∶ [0,1]→M is a Jordan arc from a to b inside N . �

We can also approximate a Jordan curve by an arithmetic curve. The proof is to split up
a curve into two arcs, and to approximate those arcs.

Theorem 4.10. Let J be a Jordan curve, and let N be a neighbourhood around J . Then
there is an arithmetic Jordan curve contained in N . Furthermore, if J bounds a Jordan
region R, then the arithmetic Jordan curve also bounds a region containing R−N . J can be
chosen to be 0(8)-computable.

Proof. Shrinking N to a smaller neighbourhood of J , we may assume that R−N is non-empty.
First, pick two (not necessarily arithemtical) points a and b on J and (non-arithmetically)
split J into two Jordan arcs J1 and J2 with common endpoints a and b. Let N1 and N2

be sufficiently small connected neighbourhoods of J1 and J2, contained in N , so that every
point of N1 is within ε of J1, and similarly for J2, for some sufficiently small ε. Fix special
points a∗ and b∗ within N ε-close to a and b, respectively. Then by Theorem 4.9 there are
J∗1 ⊆ N1 and J∗2 ⊆ N2 which are arithmetic Jordan arcs from a∗ to b∗.

R −N

N

a

a∗

b

b∗
R −N

N

a∗
b∗

a
b

Now these might intersect near a∗ and b∗, but by cutting off an initial and end segment
of each arc, we can put them together to form a Jordan curve. This Jordan curve bounds
a region containing R − N . To compute the intersection, we must use compactness; see
Lemma 3.20. (Note the new curve does not have to go though a and b, it it stays in the
neighbourhood N .)

R −N
N

a∗
b∗

The two initial Jordan arcs can be chosen to be 0(7)-computable by Theorem 4.9. By Lemma
3.20, 0(8) can compute the intersection and the modified arcs. �
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4.3. Gridlines. Using Theorem 4.10 we will be able to search for 0(8)-computable Jordan
curves so that the respective interior regions cover the whole surface. But to initiate such
a search, we must also be able to arithmetically tell whether each of these 0(8)-computable
potential Jordan regions are homeomorphic to the unit disc. Thus, our next goal is to prove
the following theorem:

Theorem 4.11. Let X =M be a manifold, and let J be a 0(8)-computable Jordan curve in
X such that the interior of J is homeomorphic to the interior of the disk. Then there is an
arithmetic (0(16)-computable) homeomorphism between J with its interior and the unit disk
with its boundary.

We begin by fixing some notation. Let I be the open region bounded by J . Let B =
[0,1]× [0,1] be the unit square, and ∂B its boundary. We may assume that J is given by a
map J ∶∂B →X; fix this notation for the remainder of this section.

The idea is to “draw”, in the interior of J , a number of (arithmetic) “horizontal” and
“vertical” gridlines, and then to use these gridlines to define the homeomorphism between
B and J together with its interior.

Notation 4.12. Denote by [a, b]Q the rational numbers in the interval [a, b], i.e., [a, b]Q =
[a, b] ∩Q.

Definition 4.13. Let Γ = {γp}p∈[0,1]Q and ∆ = {δq}q∈[0,1]Q be collections of Jordan arcs

[0,1] → I ⊆ X. We say that Γ and ∆ are gridlines, and that Γ are horizontal gridlines and
∆ are vertical gridlines, if:

(1) γ0(⋅) = J(0, ⋅) and γ1(⋅) = J(1, ⋅);
(2) for each p, γp(0) = J(p,0) and γp(1) = J(p,1);
(3) for 0 < p < 1, other than its endpoints, γp is in I, the open region bounded by J ;
(4) no two γp intersect;
(5) δ0(⋅) = J(⋅,0) and δ1(⋅) = J(⋅,1);
(6) for each q, δq(0) = J(0, q) and δq(1) = J(1, q);
(7) for 0 < q < 1, other than its endpoints, δq is in I, the open region bounded by J ;
(8) no two δq intersect; and
(9) each γp and δq intersect at only one point, γp(q) = δq(p).

We say that γp is the (horizontal) p-gridline and that δq is the (vertical) q-gridline.
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The idea is that the gridlines look something like this:

δ0 δ 1
6

δ1δ 5
6

δ 4
6

δ 3
6

δ 2
6

γ0

γ1

γ 1
6

γ 2
6

γ 3
6

γ 4
6

γ 5
6

x

When we have a finite sets of arcs Γ = {γp1 , . . . , γpm} with p1 = 0 < p2 < ⋯ < pm = 1 and
∆ = {δq1 , . . . , δqn} with q1 = 0 < q2 < ⋯ < qn = 1, we sometimes say that they are gridlines if
they satisfy the above conditions.

We will define a homeomorphism with the unit box so that points on the intersections of
two gridlines are mapped to the coordinates corresponding to the two gridlines; for example,
the point x shown on the intersection of γ 4

6
and δ 3

6
would be mapped to (3

6 ,
4
6) ∈ [0,1]×[0,1].

To extend the homeomorphism to points not between two gridlines, we need the following
additional property:

Definition 4.14. We say that Γ and ∆ are a complete set of gridlines if

(�) every pair of distinct points on the interior of J is separated by a gridline.

Each vertical gridline divides I into two “halves”. Because no two vertical gridlines inter-
sect, each other vertical gridline is contained in one half or the other. We shall adopt this
self-explanatory terminology. More specifically, we say that the q-gridline divides I into a
left half and a right half, where (because of where the gridlines meet the boundary) the left
half contains all of the q′-gridlines, q′ < q, and the right half contains all of the q′′-gridlines,
q′′ > q. We also say that points are to the left of δq or to the right of δq. Similarly each
horizontal gridline divides I into a top half and a bottom half. We say that two points are
separated by a gridline if one point is on one side of the gridline, and the other point is on
the other side. (A point on a gridline is not separated from another point off the gridline by
that gridline.)

We are ready to begin the proof of Theorem 4.11. The proof is relatively long and is
divided into a number of subsections.

4.3.1. Using gridlines to define a homeomorphism. We begin by showing that we can use
a complete set of gridlines to build a homeomorphism from B = [0,1] × [0,1] to J and its
interior I. Suppose that Γ = {γp}p∈[0,1]Q and ∆ = {δq}q∈[0,1]Q are a complete set of gridlines;

see (�). Define f ∶ [0,1]Q × [0,1]Q → I ⊆ X as follows. Given (p, q), let f(p, q) be the unique
intersection point of γp and δq.
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Claim 4.14.1. Given (x, y) ∈ [0,1] × [0,1] and a rational sequence (xn, yn)n∈N ∈ [0,1]Q ×
[0,1]Q which converges to (x, y), the limit

lim
n→∞

f(xn, yn)

exists and is independent of the choice of sequence.

Thus f extends to a continuous map f̃ ∶ [0,1] × [0,1] → I ⊆ X on the completion of its
domain, by defining

f(x, y) = lim
n→∞

f(xn, yn)

for any rational sequence xn → x and yn → n. (The claim implies that f is continuous on
[0,1]Q × [0,1]Q, but this alone is not enough to know that it extends.)

Proof of Claim 4.14.1. First, suppose that we have two rational sequences (x′n, y′n) and
(x′′n, y′′n) with the same limit (x, y), but such that

lim
n→∞

f(x′n, y′n) = a ≠ b = lim
n→∞

f(x′′n, y′′n).

Now there is a gridline, say without loss of generality a vertical gridline δq, separating a and
b. Suppose that a is on the left half of δq, and b is on the right half.

Now f(x′n, y′n) lies on the vertical y′n-gridline, and so for large enough n, we must have
y′n < q. (Since limn→∞ f(x′n, y′n) = a is on the left half of δq, f(x′n, y′n) must be on the left
half for sufficiently large n.) Similarly, y′′n > q for sufficiently large n. Then, since y is the
common limit of both y′n and y′′n, we must have y = q.

For each q′ < q, a must be on the right half of δq′ . This is because for sufficiently large n,
y′n > q′, and so f(x′n, y′n) is on the right half of δq′ . Similarly, for each q′′ > q, b must be on
the left half of δq′ . So the situation must be as follows:

a b
δq

The key observation is that vertical gridlines fail to separate a from any point of δq. We
claim that, indeed, there is a point on δq which is not separated from a by horizontal gridlines
either. Some of the horizontal gridlines must be above a, and some must be below a, and
at most one horizontal gridline goes through a. There is a real number r such that for each
rational p < r, γp is below a, and for p > r, γp is above a. Recall that (9) of Definition 4.13
says that each γp and δq intersect at only one point, γp(q) = δq(p). Thus, for each rational
p < r, γp is below δq(r), and for each p > r, γp is above δq(r). Then a is not separated from
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δq(r) by any gridline, horizontal or vertical.

a b
δq

δq(r)

This gives a contradiction. We conclude that for any two rational sequences (x′n, y′n) and
(x′′n, y′′n) with the same limit (x, y), we have

lim
n→∞

f(x′n, y′n) = lim
n→∞

f(x′′n, y′′n).

Second, suppose that (xn, yn) is a sequence of rationals pairs converging to (x, y). If
f(xn, yn) does not converge, the since the codomain I is compact, there are two subsequences
(x′n, y′n) and (x′′n, y′′n) such that f(x′n, y′n) converges to a point a and f(x′′n, y′′n) converges
to a different point b. By the above argument, this cannot happen. So limn→∞ f(xn, yn)
exists. �

Claim 4.14.2. f is injective.

Proof. Suppose that (x, y) ≠ (x′, y′), say, without loss of generality, x < x′. Choose rationals
q, q′ with x < q < q′ < x′. Then f(x, y) is the limit of points to the left of δq, and f(x′, y′) is
the limit of points to the right of δq′ . Thus f(x, y) ≠ f(x′, y′). �

Claim 4.14.3. f is surjective onto I.

Proof. Fix a ∈ R. It suffices to show that for each ε > 0, there are (x, y) ∈ [0,1]Q × [0,1]Q
with f(x, y) within ε of a.

Consider the connected component of a in the basic open ball of radius ε around a, and
choose another point b within this connected component. (We need to consider the connected
component since otherwise, the points might be at close proximity but be separated by a
gridline which does not even intersect the basic ball, i.e., “far-far away”.) Since a and b are
separated by a gridline, there must be a gridline, say δq, passing within ε of a. So there must
be some rational p with d(γq(p), a) < ε. Thus f(p, q) = γq(p) is within ε of a. �

Claim 4.14.4. f is a homemorphism.

Proof. Since f is continuous and injective with a compact domain, it is a homeomorphism
onto its image I. �

Claim 4.14.5. f is computable from

⎛
⎝ ⊕
p∈[0,1]Q

γp ⊕ ⊕
q∈[0,1]Q

δq
⎞
⎠

′

.

Proof. We can compute f ∶ [0,1]Q×[0,1]Q → I ⊆X from the oracle ⊕p∈[0,1]Q γp ⊕ ⊕q∈[0,1]Q δq.
Indeed, f(p, q) = γp(q) = δq(p). Then using an extra jump we can also compute a name for

the extension f̂ ∶ [0,1] × [0,1]→X using the uniform continuity of f̂ , as follows.
Given a positive rational ε, we have to compute a rational δ such that ∣(p, q) − (v,w)∣ < δ

implies ∣f(p, q) − f(v,w)∣ ≤ ε. For each such fixed potential δ corresponding to the given ε,
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the collection of points for which it works is a closed set. In particular, if it fails then it fails
on special points, which is Σ0,f

1 . Thus it takes one extra jump over the complexity of f to
check if δ works for a given ε. We can search for the first found δ that works for ε, and by
compactness such a δ must exist. �

Thus if we can find a complete set of gridlines, we can construct the desired homeomorphism.
We return to the problem of constructing such a set of gridlines.

4.3.2. An overview and an obstacle. Our construction of a complete set of gridlines will be
stage-by-stage, at each stage adding finitely many new gridlines. As they are already pre-
determined, we can start with γ0(⋅) = J(0, ⋅), γ1(⋅) = J(1, ⋅), δ0(⋅) = J(⋅,0), and δ1(⋅) = J(⋅,1).
Fixing some listing (qi)i∈N of the remaining rational numbers in (0,1)Q, at stage 3k + 1 and
3k + 2 we will define the qk-gridlines γqk and δqk if they have not already been defined at a
previous stage. The remaining conditions for a set of gridlines are all things to avoid; e.g.,
when defining a new horizontal gridline, we must keep it disjoint from all other horizontal
gridlines, and it must intersect the vertical gridlines at the correct points.

To make our set of gridlines complete, at stages 3k we must work to meet condition (∗):

(∗) every pair of distinct points in I is separated by a gridline.

There are uncountably many instances of the second condition to be a complete set of
gridlines. Thus we cannot hope to meet these requirements one-by-one, satisfying only
finitely many of them at every stage of the construction. Luckily, in Lemma 4.15 we will
show that (∗) is equivalent to the following condition (∗∗) which has only countably many
instances:

(∗∗) for every pair of disjoint basic closed balls C1 and C2 contained in I with rational
radii and centred at special points, there are finite covers by basic connected open
balls B1, . . . ,Bn of C1 and B∗

1 , . . . ,B
∗
m of C2 in I such that each Bi is separated from

each B∗
j by a gridline.

In the condition above, a gridline separates two basic connected open sets if one open set
is one one side of the gridline, the other open set is on the other side, and the gridline is
disjoint from the closures of the open sets. Note that we ask the open sets to be connected
so that they are contained entirely on one side or the other of the gridline.

Lemma 4.15. Let Γ = {γp}p∈[0,1]Q and ∆ = {δq}q∈[0,1]Q be a set of gridlines. Then they are a
complete set of gridlines if and only if they satisfy (∗∗).

Proof. It is important for the proof that I is compact. It is easy to see that (∗∗) implies (∗):
given any two points, we can find disjoint basic closed balls C1 and C2 as in (∗∗) containing
them. Then, given any finite cover by open balls B1, . . . ,Bn of C1 and B∗

1 , . . . ,B
∗
m of C2,

there are balls Bi and B∗
j containing the two points. These two balls, and hence the two

points, are separated from each other by a gridline.
Now we must show that (∗) implies (∗∗). Fix C1 and C2 as in (∗∗). For each x ∈ C1,

y ∈ C2 there is either a horizontal or vertical gridline separating the two. Call this gridline
Gx,y and choose open balls Ux,y ∋ x and Vy,x ∋ y that are separated from each other by the
gridline. For each x, there are finitely many y1, . . . , yn such that the Vyi,x cover C2, and take
Ux = ⋂yi Ux,y. Then each point of C2 is separated from each point of Ux by a gridline Gx,yi .
Now there are finitely many x1, . . . , xm such that the Uxi cover C1. Take the gridlines Gxi,yi ;
every point of C1 is separated from a point of C2 by one of these gridlines. �
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Note that because (∗) holds in [0,1] × [0,1] with the standard rational gridlines, (∗∗) is
also satisfied.

Can we simplify (∗∗) to a simpler condition which would not involve separating closed
sets? One might consider a third condition (∗ ∗ ∗) which says that the gridlines are very
close to each other. For example:

(∗ ∗ ∗) For every horizontal p-gridline and ε > 0, there is δ > 0 such that every horizontal
p′-gridline, with ∣p − p′∣ < δ, has every point of γp′ within ε of a point of γp; and
similarly for vertical gridlines.

It would be much easier to construct gridlines satisfying (∗∗∗). Unfortunately, (∗∗∗) is not
equivalent to (∗) and (∗∗). We will explain why so as to show something that we must be
careful to avoid when we construct our gridlines.

In the following set of gridlines, each horizontal gridline intersects each vertical gridline
exactly once. They also satisfy (∗∗∗) (though of course we cannot draw all the gridlines, but
one can imagine that there are more gridlines in between the ones shown). And yet none of
the points along the dashed line are separated from each other by any horizontal or vertical
gridlines. Using a set of gridlines satisfying (∗ ∗ ∗), one could still define a continuous map
from J and its interior to [0,1] × [0,1], but it would not be injective.

This example also shows that it is not sufficient to ask that every two special points be
separated; the points on the dashed line are not separated, and it could be that there are no
special points on that line.

4.3.3. Effectiveness. We have to make sure that our construction of the gridlines is arith-
metic, so that by Claim 4.14.5, the resulting homeomorphism is arithmetic. We will use the
results of Section 4.2, though there are two new issues that we did not deal with there, and
so we will need to strengthen these results. The general setup will be that we want to make
a Jordan arc from a to b, with a on a Jordan arc J1 and b on a Jordan arc J2, such that the
new Jordan arc does not intersect J1 and J2 except at a and b respectively.

TODO PICTURE
The two issues are:

● There is an open neighbourhood between J1 and J2 in which we want our new arc
J to be. But the end-points of the new arc do not belong to the neighbourhood N ,
since we merely have a, b ∈ ∂N . But in Theorem 4.9 the assumption is that J ⊂ N .
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● We need to have an arithmetic bound on all of the gridlines. If we build an arc from
a to b naively, it will have greater complexity than J1 and J2 because it needs to
ask questions about J1 and J2. Then there will not be an arithmetic bound on the
gridlines (but rather 0(ω) will be a bound).

The first issue will mostly require taking greater care when constructing the series of ε-arcs
for smaller and smaller ε’s. If we follow the strategy of Theorem 4.9, we might end up
choosing our first ε-arc like this:

a

Then any Jordan curve starting at a inside the ε-arc will intersect the vertical curve at some
point other than a. By being more careful, we will make sure that the curve, near a, is
contained within the hatched region. This will require that second ball of the ε-arc should
intersect this hatched region.

The second issue will require a finer notion of complexity for Jordan arcs. The key is to
note that a and b are in the middle of their arcs, while the new arc J that we are constructing
attaches to a and b at its endpoints. We will be able to arrange that the arcs are easier to
compute in the middle, and only harder to compute near their endpoints; and then since we
attach the endpoints of new arcs to the middles of existing arcs, we can maintain a bound
on the complexity of the arcs. We make the following definition capturing this idea.

Definition 4.16. A Jordan arc J ∶ [0,1]→M is globally 0(n)/locally 0(m)-computable if:

● J is 0(n)-computable, and
● given rationals x, y with 0 < x < y < 1, J↾[x,y] is 0(m)-computable, and uniformly in x

and y we can use 0(n) to compute an index for J↾[x,y].

The following theorem is the required refinement of Theorem 4.9 (though it uses Theorem
4.9 in its proof). We delay its proof until Section 4.5.

Theorem 4.17. Let J1, J2, J3, J4 be four globally 0(13)/locally 0(9)-computable Jordan arcs,
such that J1 → J2 → J3 → J4 is a Jordan curve. Let I be the interior of this curve, and
suppose that the curve and its interior are homeomorphic to the unit disk and its boundary.
Let a be a point on J1, and let b be a point on J3, both 0(9)-computable. Let K be a Jordan
arc from a to b contained in I, and let N be an open neighbourhood of K. Then there is a
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globally 0(13)/locally 0(9)-computable Jordan arc from a to b contained in N ∩ I.

a b

J1

J2

J3

J4

N

I

K J

In Section 4.3.2 we described condition (∗∗) that we must meet. Suppose that at some
point in the construction, we have already constructed finitely many horizontal and vertical
gridlines. We now want to add finitely many new gridlines, separating two closed sets C1

and C2. The situation might look like this:

C1

C2

To separate C1 and C2, we would want to divide C1 up into D1, D2, and D3 and use gridlines
δ and γ like the following:

D1

D2 D3

C2

γ

δ

Now we need to replace δ and γ by arithmetic gridlines δ∗ and γ∗, such that δ∗ still separates
D1 and C2, and γ∗ still separates D3 and C2. (D2 is already separated from C2 by the original
gridlines.) Any close enough approximation to δ will still separate D1 and C2, in the sense
that there is a neighbourhood of δ such that any other Jordan arc in the neighbourhood
also separates D1 and C2. We already know—by Theorem 4.9—how to draw arithmetic
approximations of each of δ and γ separately. But how do we make sure that they intersect
at a single point? The following picture shows why this might be difficult; suppose that we
use Theorem 4.9 to find an arithmetic approximation δ∗ of δ in some neighbourhood of δ,
and now we want to find an arithmetic approximation γ∗ of γ through a neighbourhood of
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γ. If the δ∗ we obtain is as shown below, we cannot choose γ∗ without having δ∗ and γ∗

intersect at multiple points.

δ∗

The solution is as follows. We can find two Jordan arcs, H and H ′, one on each side of
γ, such that any Jordan arc between H and H ′ separates the same closed sets taht γ was
chosen to separate. Now we want to make sure that δ∗ has the property that once it reaches
H ′, it never again intersects H. Intuitively, one should think of δ∗ as looking as follows:

δ∗

H

H ′ γ∗

In this picture, we can easily see how can could draw a γ∗, contained between H and H ′,
which intersects δ∗ exactly once. In general, the following lemma says that in this situation,
one can always find such a γ∗. (The lemma does not give an arithmetic such γ∗, but once
we know that there is some such Jordan arc, Theorem 4.17 allows us to construct one
arithmetically.)

Lemma 4.18. Let J be a Jordan curve that bounds a Jordan region. Suppose that H and H ′

are Jordan arcs, with H going from a point h0 to h1, and H ′ going from h′0 to h′1. Suppose
that H and H ′ do not intersect, so that, in order around the arc J , the points are ordered
h0, h′0, h

′
1, h1. Let K be a Jordan arc from a point a on J between h0 and h1 to a point b on

J between h′0 and h′1. Suppose that once K intersects H ′, it never again intersects H. Let c
be a point on J between h0 and h′0, and let d be a point on J between h1 and h′1. Then there
is a Jordan arc H∗ from c to d such that H∗ does not intersect H or H ′, and such that H∗
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intersects K exactly once.

h0 h1

h′0 h′1

a

b

c
d

K

H

H ′

J

⇒
h0 h1

h′0 h′1

a

b

c
d

K

H

H ′

J

Proof. Up to homeomorphism, we can assume that J is a unit square, and that H, H ′, and
K2 are straight lines. There is some last intersection of K with H, and first intersection of
K with H ′. The segment of K between these two intersections lies between H and H ′. So
divide K up into three segments, K1,K2,K3, with K2 between H and H ′, K1 all above H ′,
and K3 all below H.

c
d

K1

K2

K3

≅ c d

K1

K2

K3

It is intuitively clear that there is a Jordan arc from c to d, between H and H ′, crossing K2

exactly once, and disjoint from K1 and K3. One way to argue formally is as follows. For the
next paragraph we work with the standard metric, so that the basic open balls are in fact
circles, and their boundaries are given by a Jordan curve.

First, put small open balls B and B′ around the common points of intersection of K1, K2,
and H, and of K2, K3, and H ′. Now the following closed sets are all disjoint: K1 ∪H −B,
K3 ∪H ′ −B, K2 −B, the point c, and the point d. Thus we can cover K1 ∪H −B by finitely
many open balls B1, . . . ,B` disjoint from the other closed sets, and so that B ∪B1 ∪⋯ ∪B`

is connected. Similarly we can cover K3 ∪H ′ −B′ by finitely many open balls B′
1, . . . ,B

′
m.

Now the exterior boundaries of B ∪B1 ∪⋯∪B` and of B′ ∪B′
1 ∪⋯∪B′

m are given by Jordan
curves (which are made up of fintiely many circular arcs). These two curves meet K2 at only
one point each, on the boundary of B and B′. So we can essentially think of these boundary
curves as a new H and H ′ which are closer together than the orginals. One can then easily
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draw a Jordan arc from c to d between them, crossing K2 exactly once.

c d

�

So we need a modification of Theorem 4.17 in which we can also obtain this nice behaviour
with pairs of Jordan arcs in the other direction. We may need to have more than one pair
of gridlines H,H ′.

Theorem 4.19. In addition to the hypotheses of Theorem 4.17, suppose that

H1,H
′
1,H2,H

′
2, . . . ,H`,H

′
`

are Jordan arcs, all non-intersecting, and each from a point on J2 to a point on J4, neither
point being on the ends of J2 or J4. Suppose that H1,H ′

1,H2,H ′
2, . . . ,H`,H ′

` are listed in
that order from closest to J1 to closest to J3. Then we can find a globally 0(13)/locally 0(9)-
computable Jordan arc as in Theorem 4.17 with the additional property that once it crosses
H ′
i , it never again crosses Hi.

We also leave the proof of this fact to Section 4.5.

4.3.4. Construction of a complete set of gridlines. Recall that we have a Jordan curve
J ∶∂B →M , where B is the unit box [0,1] × [0,1]. We want to construct a complete set of
gridlines covering the region I bounded by J .

We construct the gridlines using 0(15). Each gridline itself will be composed of finitely many
pieces, each of which is globally 0(13)/locally 0(9)-computable. Since 0(15) can compute all of
the gridlines, by the results in Section 4.3.1, 0(16) will be able to compute a homeomorphism
between J together with its interior I and [0,1]×[0,1]. Modulo the proofs of Theorems 4.17
and 4.19 in Section 4.5, this will give a proof of Theorem 4.11.

The construction will be a stage-by-stage construction, where at each stage s we have
defined finitely many gridlines Γs and ∆s. Suppose that at stage s we have defined Γs =
{γp1 , . . . , γpm} with p1 = 0 < p2 < ⋯ < pm = 1 and ∆s = {δq1 , . . . , δqn} with q1 = 0 < q2 <
⋯ < qn = 1. Then for each i and j, δqi↾[pj ,pj+1] and γpj ↾[qi,qi+1] will be globally 0(13)/locally

0(9)-computable Jordan arcs.
Let rk be a computable listing of [0,1]Q and let (Ck

1 ,C
k
2 ) be a listing of pairs of disjoint

basic closed balls with rational radii and centred at special points. We have three sets of
requirements to meet:

(1) Define δrk .
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(2) Define γrk .
(3) Satisfy an instance of (∗∗): If Ck

1 ,C
k
2 are in I, there are finite covers by basic con-

nected open balls B1, . . . ,Bn of C1 and B∗
1 , . . . ,B

∗
m of C2 such that each Bi is separated

from each B∗
j by a gridline.

At each stage, we add finitely many gridlines to meet one of these requirements.

Stage s = 0: We begin at stage s = 0 with Γs = {γ0, γ1} and ∆s = {δ0, δ1} where γ0(⋅) = J(0, ⋅),
γ1(⋅) = J(1, ⋅), δ0(⋅) = J(⋅,0), and δ1(⋅) = J(⋅,1). These are 0(8)-computable, hence globally
0(13)/locally 0(9)-computable.

Stage s + 1 = 3k: We meet the kth requirement of type (1), defining δrk . For simplicity, we
write r = rk at this stage. Suppose that at the previous stage we defined Γs = {γp1 , . . . , γpm},
with p1 = 0 < p2 < ⋯ < pm = 1, and ∆s = {δq1 , . . . , δqn}, with q1 = 0 < q2 < ⋯ < qn = 1. If δr has
already been defined in ∆s, then we do not have to do anything at this stage. So suppose
that it has not been defined, and let i be such that qi < r < qi+1.

For each j = 1, . . . ,m − 1, consider the region bounded by δqi ↾[pj ,pj+1], δqi+1 ↾[pj ,pj+1],
γpj ↾[qi,qi+1], and γpj+1 ↾[qi,qi+1]. (Recall (9) of Definition 4.13 which gives the intersection
points of these gridlines.) Each of these is a globally 0(13)/locally 0(9)-computable Jordan
arc. Consider also the 0(9)-computable points a = γpj(r) and b = γpj+1(r) on the boundary of
this region.

a

b

δqi δqi+1

γpi+1

γpi

δr ↾[pi,pi+1]

By Theorem 4.17 there is a globally 0(13)/locally 0(9)-computable Jordan arc from a to b
contained in this region. Denote this Jordan arc by δjr and assume that it has domain
[pj, pj+1].

Now we can define δr to be the Jordan arc with domain [0,1] which is the concatenation
of each of the Jordan arcs δjr .

Stage s+ 1 = 3k + 1: We meet the kth requirement of type (2), defining γrk . This is the same
construction as meeting a requirement of type (1), except horizontal instead of vertical.

Stage s + 1 = 3k + 2: We meet the kth requirement of type (3), separating C1 = Ck
1 and

C2 = Ck
2 . Suppose that at the previous stage we defined Γs = {γp1 , . . . , γpm}, with p1 = 0 <

p2 < ⋯ < pm = 1, and ∆s = {δq1 , . . . , δqn}, with q1 = 0 < q2 < ⋯ < qn = 1.
Using 0(8), ask whether Cs

1 and Cs
2 are in the region I bounded by J .

Since J is 0(8)-computable, by Lemma 3.22 I is a 0(8)-computable open set, and so by Lemma
3.8 we can test containment using 0(8).
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If C1 and C2 are not in the region I, we do not have to do anything. If they are, then look
for:

● new rational numbers p′1, . . . , p
′
m′ and q′1, . . . , q

′
n′ (write q∗1 , . . . , q

∗
n+n′ for q1, . . . , qn, q′1, . . . , q

′
n′

in increasing order),
● additional vertical gridlines δq′1 , . . . , δq′n′ , such that for each j = 1, . . . , n′ and i =

1, . . . ,m − 1, δq′j↾[pi,pi+1] is a globally 0(13)/locally 0(9)-computable Jordan arc;

● additional horizontal gridlines γp′1 , . . . , γp′m′
, such that for each i = 1, . . . ,m′ and j =

1, . . . , n + n′ − 1, γp′i↾[q∗j ,q∗j+1] is a globally 0(13)/locally 0(9)-computable Jordan arc;

● a finite cover B1 of C1 by basic connected open balls; and
● a finite cover B2 of C2 by basic connected open balls

such that each B ∈ B1 is separated from each B′ ∈ B2 by a one of the gridlines

γp1 , . . . , γpm , γp′1 , . . . , γp′m′
, δq1 , . . . , δqn , δq′1 , . . . , δq′n′ .

Assuming they exist, we can find such gridlines using 0(15). Let ∆s+1 = {δq1 , . . . , δqn , δq′1 , . . . , δq′m′
}

and let Γs+1 = {γp1 , . . . , γpm , γp′1 , . . . , γp′n′}.

Since these arecs are all 0(13)-computable, by Lemma 3.20 we can check for the right kind of
intersections using 0(14). To check that an arc is contained in I, we check that for every ε > 0,
there is an open cover of the arc by ε-balls such that every ε ball intersects I. We can decide
this using 0(15).

For the verification, it is sufficient to argue that such gridlines exist. First we will argue
that we can find such gridlines non-effectively, and then we will show how to find them
arithmetically. So first we argue non-effectively that there are

● new rational numbers p′q, . . . , p
′
m′ and q′1, . . . , q

′
n′ (write q∗1 , . . . , q

∗
n+n′ for q1, . . . , qn, q′1, . . . , q

′
n′

in increasing order),
● additional vertical gridlines δ∗q′1

, . . . , δ∗q′
n′

;

● additional horizontal gridlines γ∗p′1
, . . . , γ∗p′

m′

;

● a finite cover B1 of C1 by basic connected open balls; and
● a finite cover B2 of C2 by basic connected open balls

such that each B ∈ B1 is separated from each B′ ∈ B2 by a one of the gridlines

γp1 , . . . , γpm , γ
∗
p′1
, . . . , γ∗p′

m′

, δq1 , . . . , δqn , δ
∗
q′1
, . . . , δ∗q′

n′
.

There is a homeomorphism θ taking J and its interior to [0,1] × [0,1] which takes each
of the original horizontal gridlines γpi to the horizontal gridline with equation y = pi in
[0,1] × [0,1], and each original vertical gridline δqj to the vertical gridline with equation
x = qj in [0,1] × [0,1]. Moreover, we can choose such a homeomorphism to map γpi(r) to
the point (r, pi) in [0,1] × [0,1] and δqj(r) to (qj, r). (See Section 3.3.) Now [0,1] × [0,1]
satisfies the following variant of (∗∗) for arbitary closed sets, the standard rational gridlines,
and any fixed basis of connected open sets:

(∗ ∗ ∗∗) Let B be an open basis for [0,1] × [0,1] consisting entirely of connected sets. For
every pair of disjoint closed sets C1 and C2 in the interior of [0,1] × [0,1], there are
finite covers B1 of C1 and B2 of C2, where each of these open sets is from B, such that
each B ∈ B1 is separated from each B′ ∈ B2 by a rational gridline of [0,1] × [0,1].

The argument that [0,1] × [0,1] satisfies (∗ ∗ ∗∗) is exactly the same as that (∗) implies
(∗∗). Now taking as B the homeomorphic image under θ of the basic connected open balls,
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using (∗ ∗ ∗∗) in [0,1] × [0,1], and pulling back through θ, we get the desired gridlines
γ∗p′1
, . . . , γ∗p′

m′

, δ∗q′1
, . . . , δ∗q′

n′
and covers B1,B2.

Now we must argue that there are arithmetic approximations of these gridlines. (We will
use the same rationals p′1, . . . , p

′
m′ and q′1, . . . , q

′
n′ and open covers B1 and B2.) For each of

the new (non-effective) horizontal gridlines γ∗p′i
, choose two gridlines Hi and H ′

i , the first

below γ∗p′i
, the second above, and both close enough to γ∗p′i

that any other horizontal gridline

between them still separates the basic connected open sets from B1 and B2 separated by γ∗p′i
.

Moreover, make sure that of all the gridlines considered so far, Hi is the one just below γ∗p′i
and H ′

i is the one just above (i.e., none of the other gridlines are between Hi and H ′
i other

than γ∗p′i
). We do not need any effectiveness bound on the Hi and H ′

i .

For each q′j, choose a neighbourhood of δ∗q′j
which is a finite union of basic open balls such

that any Jordan arc through that neighbourhood still separates any basic connected open
balls from B1 and B2 that were separated by the original arc. Moreover, we want that any
two of these neighbourhoods, for different δ∗q′j

, are disjoint, and that they do not intersect

any of the original vertical gridlines δq1 , . . . , δqn .
Now we are ready to make our arithmetic approximations. Fix j ∈ {1, . . . , n′}. By Lemma

4.19, for each i = 1, . . . ,m, there is a globally 0(13)/locally 0(9)-computable Jordan arc from
γpi(q′j) to γpi+1(q′j) within the neighbourhood around γ∗q′j

, and with the property that once it

crosses any H ′
i∗ , i

∗ ∈ {1, . . . , k}, it never again crosses Hi∗ . Piecing these together, we get a
vertical gridline δq′j . These vertical gridlines δq′i still separate all of the basic connected open

sets that were separated by the non-effective δ∗q′i
. (Note that, because each Hi and H ′

i is a

gridline, the original vertical gridlines δq1 , . . . , δqn only intersect each Hi and H ′
i once.)

δq1 δq2 δq3 δq4
γp1

γp2

γp3

γp4

H1

H ′
1

H2

H ′
2

δq′1
δq′2

Step One: Construct Vertical Gridlines
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Recall that we write q∗1 , . . . , q
∗
n+n′ for q1, . . . , qn, q′1, . . . , q

′
n′ in increasing order, so that the

vertical gridlines, from left to right, are δq∗1 , . . . , δq∗n+n′ . For each i = 1, . . . ,m′ and j = 1, . . . , n+
n′ − 1, we can use Lemma 4.18 to construct a Jordan arc from γq∗j (p

′
i) to γq∗j+1(p

′
i), between

Hi and H ′
i . Piecing these together, we get a new horizontal gridline γp′i .

δq1 δq2 δq3 δq4
γq1

γq2

γq3

γq4

H1

H ′
1

H2

H ′
2

δq′1 δq′2

γp′1

γp′2

Step Two: Construct Horizontal Gridlines

4.4. Proof of Theorem 1.1. Recall that Theorem 1.1 says that every computable closed
surface has an arithmetic atlas.

Proof of Theorem 1.1. Make a 0(10)-computable list (xi, δi, Ji) consisting of special points
xi ∈ M , rationals δi, and 0(8)-computable Jordan curves Ji contained within Bδi(xi) (these
exist by Theorem 4.10, and we need two more jumps to check that they are Jordan curves).
By Lemma 3.22, for a given i, the open region bounded by Ji is 0(8)-computable, and using
Lemma 3.8, 0(11) can decide whether the regions bounded by finitely many Jordan curves
Ji1 , . . . , Ji` covers X. We want to find a finite cover by such regions which are homeomorphic
to open disks in R2, and to compute the homeomorphisms. By compactness and Theorem
4.10, there is a finite cover of X consisting of such regions. Also, 0(20) can also find such
a cover: If Ji bounds a region containing xi and homeomorphic to the interior of the disk,
then by Theorem 4.11 there is a 0(16)-computable such homeomorphism. By Fact 3.6, for
each i we can ask 0(20) whether such a homeomorphism exists, and if it exists, find it. �

4.5. Constructing globally 0(13)/locally 0(9)-computable Jordan arcs. In this section
we will prove Theorem 4.17. Recall the statement.

Theorem 4.17. Let J1, J2, J3, J4 be four globally 0(13)/locally 0(9)-computable Jordan arcs,
such that J1 → J2 → J3 → J4 is a Jordan curve. Let I be the interior of the region bounded by
of this curve. Let a be a point on J1, and let b be a point on J3, both 0(9)-computable. Let K
be a Jordan arc from a to b contained in I, and let N be an open neighbourhood of K which
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is a finite union of basic open balls. Then there is a globally 0(13)/locally 0(9)-computable
Jordan arc from a to b contained in N ∩ I.

Uniformity is not required of this theorem; if the reader recalls where the theorem is used
in the construction of the gridlines, it is purely for a proof of the existence of a globally
0(13)/locally 0(9)-computable Jordan arc satisfying certain properties; we then separately
search for some Jordan arc satisfying those properties (but the Jordan arc we find may not,
e.g., be contained in N unless we specifically want to keep it in N).

Proof. We will define a Jordan arc H which is a 0(13)/locally 0(9)-computable Jordan arc
from a to b contained in N ∩R. We will define H by piecing together infinitely many smaller
arcs. We will define special points a′0, a

′
1, a

′
2, . . . which limit to a, and b′0, b

′
1, b

′
2, . . . which limit

to b. These will be the endpoints of the constituent arcs. These constituent arcs will be:

● H∗∗
a′0,b

′

0
from a′0 to b′0;

● H∗∗
a′i+1,a

′

i
from a′i+1 to a′i; and

● H∗∗
b′i,b

′

i+1
from b′i to b′i+1.

a
a′0a′1a′2a′3

⋯ b
b′0 b′1 b′2 b′3

⋯
H∗∗
a′0,b

′

0
H∗∗
a′1,a

′

0
H∗∗
a′2,a

′

1
Ha′3,a

′

2
H∗∗
b′0,b

′

1
H∗∗
b′1,b

′

2
H∗∗
b′2,b

′

3

Then we define H as follows:

● on the interval [14 , 34], H is the arc H∗∗
a′0,b

′

0
from a′0 to b′0;

● on the interval [ 1
4+i+1 ,

1
4+i], H is the arc H∗∗

a′i+1,a
′

i
from a′i+1 to a′i;

● on the interval [1 − 1
4+i ,1 − 1

4+i+1], H is the arc H∗∗
b′i,b

′

i+1
from b′i to b′i+1.

We also define H(0) = a and H(1) = b. To know that the resulting H is continuous, we will
need to have not just that the a′i converge to a, but that the entire arcs H∗∗

a′i+1,a
′

i
are contained

in smaller and smaller open neighbourhoods of a, and similarly the arcs H∗∗
b′i,b

′

i+1
are contained

in smaller and smaller open neighbourhoods of b. These arcs also should not intersect each
other, except at their common endpoints. Each of the constituent arcs will individually be
0(9)-computable, while the complete set of arcs will be 0(13)-computable. Thus H will be
globally 0(13)/locally 0(9)-computable.

Initial attempt to define the arc segments. Our first attempt to define the arc segments
described above will result in special points a0, a1, a2, . . . which limit to a, and b0, b1, b2, . . .
which limit to b, as well as arc segments:

● Ha0,b0 from a0 to b0;
● Hai+1,ai from ai+1 to ai; and
● H∗∗

bi,bi+1
from bi to bi+1.

These are almost the arc segments we want, except that there might be too many intersections
between the different segments. We begin by giving the construction of these segments, and
following this we will explain how to remove the intersections. We subdivide the description
into several phases. These arcs will also be 0(7)-computable, but calculating their indicies
will require 0(13).

The plan is as follows. In Phases 1-3 we define Ha0,b0 which is our first attempt to build the
“middle” segment of the arc between a and b, and calculate an estimate of the complexity
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of Ha0,b0 . In Phases 4-5 we give a detailed description of Ha1,a0 . The definitions of Hai+1,ai

(and Hbi,bi+1) are essentially the same as the definitions of Ha0,a1 (and Hb0,b1), up to a change
of notation.

Phase 1. Search for a δ > 0, finite covers of each of J1, . . . , J4 by basic open δ-balls, and
basic open balls A ∋ a and B ∋ b of radius at most δ such that:

● A,B ⊆ N ;
● the centers of A and B are at a distance at least 4δ from each other;
● A is disjoint from the covers of J2, J3, and J4;
● the center of A is of distance greater than 3δ from the endpoints J1(0) and J1(1);
● B is disjoint from the covers of J1, J2, and J4; and
● the center of B is of distance greater than 3δ from the endpoints J3(0) and J3(1).

Note that A and B are disjoint.
Given δ > 0, we can find a cover of each of J1, . . . , J4 by basic open balls of radius at most δ,
each contained in the δ-neighbourhood of the arc, using 0(13). This is because each of J1, . . . , J4
is 0(13)-computable; see Lemma 3.18. Each of these covers is finite so checking, for example,
that A is disjoint from the cover of J2 can be done using 0′ as if they are not disjoint then
they contain a special point in common. Thus we can find δ, A, and B using 0(13). The points
J1(0), J1(1), J3(0), and J3(1) are 0(13)-computable, so we can recognize in a c.e. in 0(13) way
that the distances from the centers of A and B to these points are sufficiently large.

Now using 0(13) find p, q ∈ [0,1]Q, p < q, such that J1↾[0,p] and J1↾[q,1] are disjoint from A.
We can choose p using 0(13) as follows. Using the name for J1, search for a basic open ball C
containing J1(0), with the radius of C being less than δ, and a rational p such that J−11 ([0, p)) ⊆
C. Then since A has radius at most δ and the center of A is of distance greater than 3δ from
J1(0), A and C are disjoint. Choose q similarly.

Thus the portion of J1 that passes through A is entirely contained in J1 ↾[p,q] which is

0(9)-computable (with parameters p, q). For simplicity, we write J̃1 for J1 ↾[p,q]. So J̃1 is
0(9)-computable, and we can find a 0(9)-computable index using 0(13). We can do the same
thing with B and J3, writing J̃3 for the subarc of J3.

Let Ã be the open set which is the connected component of A∩ I with a on its boundary.
(Recall the example in Section 4.3.3 which shows why we need to consider this set.) Define
B̃ similarly.

Claim 4.19.1. The set Ã has a 0(9)-computable name, and we can compute an index for
this name using 0(13). The same holds for B̃.

Proof. Note that we could compute a name for Ã using Lemma 3.22 to find a name for I
and A ∩ I, and then, using Lemma 3.10, calculate its connected component with a on the
boundary. However, the complexity of this name would be too high.

We compute the name for Ã in the following way. Suppose that A = Br(q). Fix a special
point p ∈ I using 0(13) (see Lemma 3.22). We will use this point to distinguish between the
inside and the outside of the region.

Search for ρ > 0, a ρ-cover of J , and a special point a′ ∈ A such that:

(1) p and a′ are not in the ρ-cover of J ;
(2) for every ε > 0, there is an ε-path from p to a′ disjoint from the ρ-cover of J ;
(3) for every ε > 0, there is a point a′′ ∈ A ε-close to a and a ρ′ > 0 such that for every

ε′ > 0 there is an ε′-path from a′ to a′′ within Br−ρ′(q) and avoiding a finite ρ′-cover

of J̃1.
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Conditions (1) and (2) say that a′ is inside the Jordan region I bounded by J . Condition
(3) relates a′ with a. Indeed, we have a′ ∈ Ã; the proof of this is almost literally the same as
the proof of Lemma 3.10.

We can find a′ using 0(13). Given ρ > 0, 0(13) can find a finite ρ-cover of J . Using 0(9) we
can find a finite ρ′-cover of J̃1. Checking the second item uses 0(3) and the third uses four
jumps over the complexity of a and J̃1, both of which are 0(9).

First, fix a listing of all basic connected sets contained in A; this can be done using 0(7)

(by Lemma 3.10 and Lemma 3.8). Now, to list Ã, iterate the following procedure. Put a
basic connected open set C ⊆ A in Ã if there is a ρ > 0 such that C is disjoint from a finite
ρ-cover of J̃1, and either a′ ∈ C or C intersects a basic connected open set which we have
already determined is in Ã. This is a 0(9)-computable name; we used 0(13) to find (finite)
parameters. �

Phase 2. Now find an ε > 0, δ′ > 0, an ε-arcD0, . . . ,D` contained in the open neighbourhood
N of K, ` ≥ 3, and a finite δ′-cover of J1, . . . , J4, such that:

● D0, . . . ,D` are disjoint from the δ′-cover of J1, . . . , J4;
● D0 ∩ Ã ≠ ∅;
● D` ∩ B̃ ≠ ∅;
● Di ∩ Ã = ∅ for all i > 0;
● Di ∩ B̃ = ∅ for all i < `.

a bÃ B̃D0 D1 D2 D3

Claim 4.19.2. Such an ε-arc exists and can be found using 0(13).

Proof of Claim. Since K − Ã− B̃ is closed, and so has some distance from J1, . . . , J4, we can
find a δ′ > 0, δ′ < δ and an open neighbourhood N ′ of K − Ã − B̃ which is a finite union of
basic open sets, with N ′ ⊆ N , such that N ′ is disjoint from a finite δ′-cover of J1, . . . , J4.
Since N ′ is open and contains K − Ã − B̃, and K ⊆ N ′ ∪ Ã ∪ B̃ ∪ {a} ∪ {b}, K ∩ N ′ must
intersect Ã and B̃, say at special points a∗ and b∗. Find, using Proposition 4.5, an ε-arc
D0, . . . ,D` from a∗ to b∗ contained in N ′, with ε < δ. Now a∗ ∈ D0 ∩ Ã so the intersection is
non-empty, and similarly b∗ ∈ D` ∩ B̃. Let i be greatest such that Di ∩ Ã is non-empty, and
let j > i be least such that Dj ∩ B̃ is non-empty. Since Ã ⊆ A and B̃ ⊆ B, A and B are basic
open balls of radius less than δ, the centers of A and B are of distance at least 4δ from each
other, and ε < δ, we must have that j − i ≥ 3. Then Di, . . . ,Dj is the desired ε-arc.

We claim that it takes at most 0(13) to find such an ε-arc by Lemma 4.19.1. The oracle
0(13) is used to find the finite δ′-cover of J1, . . . , J4 and a special point inside I, but after
fixing these parameters the names of Ã and B̃ are computable in 0(9). The rest requires much
less powerful oracles than 0(13). We use, e.g., 0(4) to recognize an ε-arc as in Remark 4.2.
We use 0(10) to check the intersections with Ã and B̃. We also need to check containment
of D0, . . . ,D` in N , which we can do with 0(7) by Lemma 3.8. Using 0(13) we search through
all possible ε-arcs until we find one. �
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Phase 3. Choose special points a0 ∈ D0 ∩ Ã and b0 ∈ D` ∩ B̃. Since D0 ∪ ⋯ ∪ D` is a
finite union of basic connected open sets, it is a 0(4)-computable open neighbourhood. Using
Theorem 4.9, there is a 0(7)-computable Jordan arc Ha0,b0 from a0 to b0 within D0 ∪⋯∪D`.
We can use 0(13) to find it.

Phase 4. Now choose a basic open set A1 ∋ a, A1 ⊆ A, disjoint from D0 ∪ ⋯ ∪D`, and
of radius < δ and < 1. Define Ã1 to be the connected component of A1 ∩ R with a on its
boundary. The connected open set Ã1 has a 0(9)-computable name, and we can compute an
index for this name using 0(13); this is the same as the computation of names for Ã and B̃
earlier. (Note that the curve Ha0,b0 is disjoint from Ã1.)

Phase 5. Choose a special point a1 ∈ Ã1. Find an ε1 > 0, an ε1-arc from a0 to a1 in Ã0,
a δ1 > 0, and a finite δ1-cover of J̃1, such that the ε1-arc is disjoint from the δ1-cover. Such
an ε1-arc exists because Ã0 is connected, and so there is a Jordan arc from a0 to a1 within
Ã0. Using Theorem 4.9 choose a 0(7)-computable Jordan arc Ha0,a1 from a0 to a1 within this

ε1-arc, and so within Ã0 and disjoint from the finite δ1-cover of J̃1.
As before with Ha0,b0 , even though the arc is 0(7)-computable searching for the suitable finite

parameters used in its definition requires the more powerful oracle 0(13).

It should be clear how this process can be iterated to define Hai+1,ai (and Hbi,bi+1). For

that, define Ãi ∋ ai (and B̃i ∋ bi) of radius < 1
i and keep them disjoint from (finite covers of)

the arcs already constructed, and also use δi-covers of J̃1 to keep the new arcs away from the
boundary. Each of these arcs is 0(7)-computable, however, computing their indices requires
0(13). We are using here, among other things, the fact that a and b have 0(9)-computable
names.

Refining the arcs. The issue is that Ha1,a0 might intersect the Jordan arc Ha0,b0 at some
point other than a0, and similarly Ha2,a1 and Ha1,a2 can intersect at a point other than a1,
etc.

a
a′0

a1a2a3
⋯

a′1

Any intersection of Ha0,b0 must be in Ã0, since the Jordan arc Ha0,a1 is contained in Ã0; and

the intersection cannot be in Ã1 as the Jordan arc Ha0,b0 , being contained in D0 ∪ ⋯ ∪D`,

is disjoint from this. So we can choose some common point a′0 ∈ Ã0 − Ã1 of the two arcs
(possibly with a′0 = a0 if they did not intersect anywhere else; see the diagram) and, by
Lemma 3.20,

● a 0(8)-computable Jordan arc H∗
a′0,b0

from a′0 to b0 which is a subarc of Ha0,b0 , and

● a 0(8)-computable Jordan arc H∗
a1,a′0

from a1 to a′0 which is a subarc of Ha1,a0
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such that H∗
a′0,b0

and H∗
a1,a′0

meet only at their common endpoint a′0.

Now Ha2,a1 might intersect H∗
a1,a′0

, but it cannot intersect H∗
a′0,b0

(because Ha2,a1 is in Ã1 but

H∗
a′0,b0

is disjoint from Ã1). As before, we claim that we can find common point a′1 ∈ Ã1 − Ã2

of the two arcs Ha2,a1 and H∗
a1,a′0

and

● a 0(8)-computable Jordan arc H∗∗
a′1,a

′

0
from a′1 to a′0 which is a subarc of H∗

a1,a′0
, and

● a 0(8)-computable Jordan arc H∗
a2,a′1

from a2 to a′1 which is a subarc of Ha2,a1

such that H∗∗
a′1,a

′

0
and H∗

a2,a′1
meet only at their common endpoint a′1. It seems that, however,

there is an obstacle here since H∗
a1,a′0

is already a 0(8)-computable arc; if we found a 0(9)-

computable intersection point a′1, then the arc Ha2,a′1
would be 0(9)-computable, and we

would keep increasing the complexity.
To circumvent this issue, use the fact that H∗

a1,a′0
was just the restriction of a 0(7)-

computable arc to a 0(8)-computable interval. Then a′1 is on the restriction of H∗
a1,a′0

to

some rational interval, and this restriction is a 0(7)-computable arc (though its index re-
quires a more powerful oracle to be computed). So again by Lemma 3.20 this intersection
point is (non-uniformly) 0(8)-computable. But of course, we can use 0(13) to compute a 0(8)-
computable name for the intersection point a′1. Thus, using 0(13) we can compute indices for
these as 0(8)-computable arcs.

Continue in this way to define points a′i ∈ Ãi and Jordan arcs H∗∗
a′i+1,a

′

i
such that H∗∗

a′i+1,a
′

i
is

contained entirely in Ãi. Similarly, on the other side, we can define points b′i ∈ B̃i and Jordan

arcs H∗∗
b′i+1,b

′

i
such that H∗∗

b′i+1,b
′

i
is contained entirely in B̃i. Moreover, these arcs intersect

each other only at their common endpoints. Thus we can piece them together to get the
desired Jordan arc H from a to b. (The fact that H is continuous at the left- and right-hand
endpoints is because Ãi and B̃i are contained in open balls of radius at most 1/i.) Note that
H is a globally 0(13)/locally 0(9)-computable Jordan arc. �

We also had a strengthening of this theorem:

Theorem 4.19. In addition to the hypotheses of Theorem 4.17, suppose that

H1,H
′
1,H2,H

′
2, . . . ,H`,H

′
`

are Jordan arcs, all non-intersecting, and each from a point on J2 to a point on J4, neither
point being on the ends of J2 or J4. Suppose that H1,H ′

1,H2,H ′
2, . . . ,H`,H ′

` are listed in that
order from closest to J1 to closest to J3. Then there is a globally 0(13)/locally 0(9)-computable
Jordan arc as in Theorem 4.17 with the additional property that once it crosses H ′

i , it never
again crosses Hi.

Like in Theorem 4.17 we are not saying anything about the uniformity of finding such an
arc; indeed, there is no effectivity assumption on the Hi and H ′

i .

Proof. The proof is essentially just a refinement of the proof of Theorem 4.17 where we are
more careful about what happens between a0 and b0. To begin, choose A and B so that they
do not intersect any of the Hi. As before, we define an arc Ha0,b0 from a0 to b0, but this time
we will do it more carefully. After this, the rest of the proof is the same as for Theorem 4.17.

Choose points c1 = a0, d1, c2, d2, . . . , c`, d`, c`+1 = b0 such that ci is between H ′
i and Hi+1 and

di is between Hi and H ′
i . Now by Theorem 4.9 there are 0(7)-computable arcs Kci,di from ci
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to di and Kdi,ci+1 from di to ci+1 such that Kci,di is contained entirely between H ′
i−1 and H ′

i

and Kdi,ci+1 is contained entirely between Hi and Hi+1. (Kc1,d1 is contained entirely between
J1 and H1, and Kd`,c`+1 is contained entirely between H ′

` and J3.) Even though the Hi

and H ′
i are not neccesarily even arithmetic, we can non-effectively choose a neighbourhood

consisting of finitely many open sets around such an arc, and disjoint from the Hi and H ′
i ,

and then choose our 0(7)-computable arc within this neighbourhood.

a = c1 b = c4
d1

c2 d2 c3 d3

J1 H1 H ′
1 H2 H ′

2 H3 H ′
3 J3

As in Theorem 4.17, some of these arcs might intersect others. Once again, we can re-
move these intersections, replacing c1, d1, c2, . . . , d`, c`+1 with new points c′1, d

′
1, c

′
2, . . . , d

′
`c
′
`+1

and finding subarcs K∗
c1,d′1

,K∗
d′1,c

′

2
, . . . ,K∗

c′
`
,d′

`
,K∗

d′
`
,c`+1

of the original arcs, so that the arcs only

intersect at their common endpoints. (We keep the leftmost point c′1 = c1 = a0 and the right-
most point c′`+1 = c`+1 = b0 the same.) The new arcs are 0(8)-computable arcs, and 0(13) can
find indices for them. Then let Ha0,b0 be the concatenation of K∗

c1,d′1
,K∗

d′1,c
′

2
, . . . ,K∗

c′
`
,d′

`
,K∗

d′
`
,c`+1

.

This is an arc from a0 to b0.
Of the constituent arcs of Ha0,b0 , the only one that crosses Hi is K∗

c′i,d
′

i
, and the only one

that crosses H ′
i is K∗

d′i,c
′

i+1
. Thus Ha0,b0 has the property that once it crosses H ′

i , it never

again crosses Hi.
Now that we have defined Ha0,b0 , the rest of the proof is the same as for Theorem 4.17.

Since A was disjoint from H1, and B was disjoint from H`′ , none of the other arcs making
up H can cross any Hi or H ′

i . �

5. Triangulation and categoricity. Proof of Theorem 1.3

In this subsection we prove two important consequences of Theorem 1.1.

Theorem 5.1. Every computable surface X =M has an arithmetic triangulation. We can
find such a triangulation in an arithmetically uniform way.

Proof. By Theorem 1.1, X has an arithmetic atlas. The theorem will then follow from the
relativization of the following lemma.

Lemma 5.2. A computable closed surface X =M with a computable atlas (with computable
inverse functions) has a (0′-computable) triangulation.

Proof. We adapt very slightly the proof that every surface has a triangulization given by
Thomassen [Tho92b]. Let ϕ1∶D1 → X, . . . , ϕn∶Dn → X be computable coordinate charts
forming an atlas for X, with the inverse of the ϕi computable as well. Thomassen’s argument
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shows that there are finitely many quadrangles Q1, . . . ,Qm, with each Qi contained in some
coordinate chart D`i , such that the images ϕi(int(Qi)) in X cover X.6 Moreover, Thomassen
shows that we can choose these quadrangles such that any two of them have only finite
intersection. During Thomassen’s argument, we can also choose the vertices of each Qi to
be special points in Di. The images under the coordinate maps ϕi of the edges of the Qj

are computable Jordan arcs in X, so we can compute their intersections using 0′ by Lemma
3.20. Then the union Γ = ⋃Qi can be thought of as a graph drawn on X in a 0′-computable
way. One can easily extend this to obtain a triangulation. �

Combined with Theorem 1.1, this lemma shows that every computable surface X = M
has an arithmetic triangulation. Moreover, we get a bound of 0(22) on the complexity of
the triangulation. To finish the proof of Theorem 5.1, we must argue that we can also
arithmetically find such a triangulation; we can do this with a few more jumps simply by
searching for one and checking that it works. �

Remark 5.3. We suspect that the upper bound 0′ on the complexity of a triangulation
provided by the proof of Lemma 5.2 is not optimal. Indeed, it seems that one can completely
avoid using Lemma 3.20 by further modifying the arcs locally, but this looks a bit tedious
(if possible). We leave this as an open problem. (In a slightly different set-up, this problem
was first raised in [AC17].)

Also, assuming that we have a computable atlas, the use of Theorem 1.1 at the end of
the proof of the previous theorem is very likely an overkill. The crude bound that can be
extracted from the proof above will however be sufficient in all our applications.

We say that a space is ∆0
n+1-categorical if any two computable Polish presentations of the

space are 0(n)-homeomorphic.

Remark 5.4. We do not specify here whether the inverses of homeomorphisms have to be
0(n)-computable as well; by Claim 3.6.1 there is actually no ambiguity here. Also, note
that being arithmetically categorical is likely stronger than just saying that every pair of
presentations are 0(n)-isomorphic for some n. For countable structures under isomorphism,
such an example can be found in [DIM18]. For Polish spaces up to isometry, a similar
example can be found because there is a computable functor from countable structures to
metric spaces (see [GMKT18]) that, in particular, preserves this sort of categoricity. It seems
that none of these results implies that the notions are also different for Polish spaces up to
homeomorphism; we leave this as an open problem.

Theorem 1.3 follows from the theorem below and the well-known classification of compact
surfaces.

Theorem 5.5. Every closed surface is ∆0
2-categorical.

We first discuss why Theorem 1.3 follows from this theorem, and then we prove the
theorem. Indeed, there is a uniformly computable list (Li)i∈N of all homeomorphism types
of compact surfaces represented as simplices in Rn for a suitable n, and without repetition.

6One must make a slight adaptation to the compactness argument at the beginning of the proof, since we
are working with a fixed coordinate chart D1, . . . ,Dn. We can make the slight modification to Thomassen’s
argument by choosing, for each point p, the initial quadrangles Q1(p) and Q2(p) to have diameter smaller
than the Lebesgue number of the covering of X by ϕ1(D1), . . . , ϕn(Dn).
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To see if X is a compact surface, ask if there is a homeomorphism between X and one of
the Li; it is an arithmetic question. Also, to see whether two surfaces are homeomorphic,
arithmetically find the respective Li and Lj and check if i = j.
Proof of Theorem 5.5. One way to see why Theorem 5.5 holds uses Theorem 5.1 combined
with the following deep result in combinatorial topology. Let K and L be simplicial com-
plexes, and f a map ∣K ∣→ ∣L∣. We say that f is piecewise linear if there is a subdivision K ′

of K such that for each σ ∈ K ′, the restriction f ∣σ of f to σ maps σ linearly into a simplex
of L (equivalently in either ambient coordinates or barycentric coordinates).

Fact 5.6 (The Hauptvermutung; e.g., Theorems 8.5 and 36.2 of [Moi77]). Let K1 and K2

be triangulated 2-manifolds or 3-manifolds. If there is a homeomorphism ∣K1∣ → ∣K2∣, then
there is a piecewise linear homeomorphism ∣K1∣→ ∣K2∣. Hence K1 and K2 are combinatorially
equivalent.

Using Theorem 5.2, find arithmetic triangulations of the manifolds. By the Hauptver-
mutung, if they are homeomorphic, then there is a homemorphism between them that is
piecewise linear, hence arithmetic. �

6. Embeddings in Euclidean space. Proof of Theorem 1.2

The goal of this section is to prove that every computable compact surface is homeomorphic
to an arithmetic closed subspace of a finite-dimensional Euclidean space. Combined with
Fact 6.1 below, Theorem 5.1, and Theorem 1.1, it will give Theorem 1.2.

A closed subset C of a computable Polish space M is Π0
1 if we can computably list basic

open balls making up its complement. A closed set C is Σ0
1 if we can additionally list all

basic open balls that intersect C. A closed set is computable if it is both Π0
1 and Σ0

1. It is
well-known that C is computable if, and only if, it is computably overt which means that it
contains a computable dense sequence of points. We obtain:

Fact 6.1. A computable closed set has a computable Polish presentation.

We will use:

Corollary 6.2 (Folklore). Let M be a compact Polish space and C an arithmetic closed set.
Then C is arithmetically overt.

Proof. Let M −C = V . Given an open set U , U ∩C is empty if and only if U ⊆ V . This is
arithmetic by Lemma 3.8. �

We will give two different proofs of this fact, both are of course much more general;
one covers arbitrary Polish spaces of finite dimensions and the other works for arbitrary
manifolds. Both proofs are essentially based on a careful analysis of classical proofs of
similar results, but some care must be taken. As far as we know, the computable versions
of the former result is new, while the second result can essentially be found in [AC17] in
a significantly different notation and terminology. We give its short proof for the sake of
completeness of exposition.

Definition 6.3. The dimension of M the least n ∈ N ∪ {∞} such that every open cover of
M has a refinement of order n + 1, i.e., each point belongs to at most n + 1 sets. Here by a
refinement we mean that each open set in the refinement is contained in an open set in the
original cover.
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Theorem 6.4. Let M be a compact computable Polish space of dimension n. Then there is
a 0′-computable homeomorphic embedding of M into R2n+1.

Proof. This argument is based on the classical proof as given in e.g. Section 50 of [Mun00].
Say that a continuous function f is an ε-homeomorphism if f−1(x) has diameter at most ε
for every x in the range. The standard proof is to show that:

Fact 6.5. ε-homeomorphisms form a dense open set in C[M,R2n+1].
From this, it follows by the Baire category theorem that the interesction, over all ε = 1/k,

of the ε-homeomorphisms is non-empty. Any element f of the intersection is injective, since
for each x ∈ R2n+1, f−1(x) has diameter less than ε for every ε. Since M is compact and f is
continuous, the inverse of f is also continuous and so f is a homeomorphism.

The fact that the ε-homeomrphisms are dense proceeds by the following argument. Recall
that points u0, . . . , uk in Rn are affinely independent if they generate a k-dimensional plane,
or equivalently if u0 − u1, u0 − u2, . . . , u0 − uk are linearly independent. A set of points A in
Rn is in general position if any N + 1 of them are affinely independent.

The following lemma is simple to prove:

Lemma 6.6. Given a finite set of points x1, . . . , xk of Rn and δ > 0, there is a set of points
y1, . . . , yk in general position in Rn such that ∣xi − yi∣ < δ.

Furthermore, the density in the fact is witnessed by ε-homeomorphisms that can be defined
according to the below construction. Given a continuous f ∶M → R2n+1 and δ > 0, define an
ε-homemorphism g with ∣f − g∣ < δ as follows:

(1) Cover M by finitely many open sets U1, . . . , Uk such that
(a) diam(Ui) < ε

2 ;

(b) diam(f(Ui)) < δ
2 ;

(c) {U1, . . . , Uk} has order at most n + 1.
(2) For each i, choose a point xi ∈ Ui and choose a point zi ∈ R2n+1 such that ∣zi−f(xi)∣ < δ

and such that z1, . . . , zk are in general position. (This is possible by Lemma 6.6.)
(3) Choose a partition of unity {φi} supported by Ui, i.e. such that the support of φi

is contained within Ui. We can do this computably by Theorem 4.4.64 of [Bra98].
Define

g(x) =∑
i

φi(x)zi.

Then, as argued in [Mun00], g is an ε-homeomorphism and ∣f − g∣ < δ.
To see that ∣f − g∣ < δ,

f(x) − g(x) =∑φi(x)(zi − f(x)) =∑φi(x)(zi − f(xi)) +∑φi(x)(f(xi) − f(x)).
We have ∣zi − f(xi)∣ < δ/2 and, if φi(x) > 0 then x ∈ Ui and so ∣f(xi) − f(x)∣ < δ/2. Since
∑φi(x) = 1, we have ∣f(x) − g(x)∣ < δ.

Now to show that g is an ε-homemorphism, we show that if g(x) = g(y) then for some i,
x, y ∈ Ui. If g(x) = g(y) then

∑(φi(x) − φi(y))zi = 0.

Because the covering {Ui} has order at most n + 1, at most n + 1 of the φi(x) are non-zero,
and at most n + 1 of the φi(y) are non-zero. So there are at most 2n + 2 non-zero terms in
the equation above. We have

∑(φi(x) − φi(y)) = 1 − 1 = 0
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and so since the {zi} are in general position in R2n+1 (and (2n + 1) + 1 = 2n + 2) each of
the coefficients φi(x) − φi(y) must be zero. Now φi(x) > 0 for some i so that x ∈ Ui, and so
φi(y) > 0 and y ∈ Ui.

The limit of the process exists and gives an injective homeomorphic embedding of M
into R2n+1, thus a homeomorphic embedding. It remains to check that 1-3 can be done
arithmetically. (2) and (3) can be done computably. For (1), we need to use 0′ to recognize
when finitely many open sets cover M . We can look for finitely many closed sets that cover
M , and then expand their radius a tiny bit. To see that diam(f(Ui)) < δ/2 can also be done
by 0′. Because the data from one stage to the next is finite, this can all be done using 0′. We
get closer and closer at each stage so the limiting function is indeed computable by 0′. �

Theorem 6.7 ([AC17]). Let M be a computable compact topological manifold with com-
putable atlas. Then there is a computable embedding of M into Rn for some n.

Proof. This is again an effectivisation of a classical argument. Let Ui, . . . , Uk be the open
cover of M given by the computable atlas, and let φi be a computable parititon of unity
supported by Ui. Let gi∶Ui → Rm be the computable embedding of Ui in Rm. Then define
h∶M → Rm by

hi(x) = {φi(x)gi(x) x ∈ Ui
0 x ∉ Ui

.

Define
F ∶M → Rk+km

by
F (x) = (φ1(x), . . . , φk(x), h1(x), . . . , hk(x)).

Then F is clearly continuous, and it is injective because if F (x) = F (y), then φi(x) = φi(y)
for each i. For some i, φi(x) = φi(y) > 0, and so x, y ∈ Ui and hi(x) = hi(y). This implies
that gi(x) = gi(y), and since gi is an embedding, x = y. Since M is compact, the inverse of
F is also continuous, and so F is a homeomorphism. Moreover, F is clearly continuous. �

In the case of compact surfaces, combine the above theorem with Theorem 1.1 to get an
arithmetic embedding.

The arithmetic continuous image of a compact space is compact and thus closed. It is
also arithmetically overt since the computable dense set will be mapped to an arithmetic
dense set of the image. Therefore, we conclude that in both theorems above the space is
homeomorphic to an arithmetically overt subspace of a suitable power of R.
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